
СЕМЕЙСТВА ТЕОРИЙ
И ИХ ХАРАКТЕРИСТИКИ

С.В. Судоплатов

Институт математики им. С.Л. Соболева СО РАН,
Новосибирский государственный технический университет,

Новосибирский государственный университет

Всероссийская научная конференция
“Математические основы информатики

и информационно-коммуникационных систем”
04 декабря 2021 г.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



Theories, Models, and Types

(Elementary) Theory T : an information written by first-order
formulas / syntax

Complete Theory: a maximal consistent information

ModelM of T : an object realizing T / semantic

Countable Model (Structure): a model (of a theory) with
countably many elements

(Complete) type: a (complete) information about a finite set A
inM
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Spectrum functions

I (T , λ) denotes the number of pairwise non-isomorphic models
of T and having λ elements (λ is an infinite power, T is a
complete theory without finite models).

The spectrum function I (T , ·) maps a (finite or infinite) power
I (T , λ) for an infinite power λ.

We consider λ = ω (countable, i.e., enumerable by natural numbers
forming the set ω).

It is known that for any countable complete theory T ,

I (T , ω) 6= 2, Vaught Theorem,
if I (T , ω) > ω1 then I (T , ω) = 2ω, Morley Theorem.

Thus, I (T , ω) ∈ (ω \ {0, 2}) ∪ {ω, ω1, 2ω}.
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Countable theories with respect to countable models

Countable theories

ω-categorical

I (T , ω) = 1

with finitely many
countable models,

Ehrenfeucht

3 ≤ I (T , ω) < ω

with
countably many
countable models

I (T , ω) = ω

with ω1
countable models

I (T , ω) = ω1
Vaught Problem

with continuum many
countable models

I (T , ω) = 2ω
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Theories

Greece, Athens, Acropolis, Theorias street
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Models

Models

uncountable

Shelah’s ,
B.Hart, E.Hrushovski,

M. S. Laskowski,
and many other specialists

countable

Many results
by specialists

including the author’s
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Countable models

Countable models

prime over
finite sets,

almost prime
(finitely

generated)

limit
(not prime
but unions
of almost

prime models)

other
(neither
prime
nor
limit)
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Countable models and types

We denote by
P(T ) the number of pairwise non-isomorphic (almost) prime
models of T ,
L(T ) the number of pairwise non-isomorphic limit models
of T ,
NPL(T ) the number of pairwise non-isomorphic other
countable models of T .

The set of all types of theory T is denoted by S(T ).
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Countable theories and types

Countable theories

small,
i.e., with
countably
many types

|S(T )| = ω

unsmall,
i.e., with
continuum
many types

|S(T )| = 2ω
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Countable models of small theories

Small theories
⇒ NPL(T ) = 0

I (T , ω) = 1

P(T ) = 1
L(T ) = 0

3 ≤ I (T , ω) < ω

1 < P(T ) < ω
1 ≤ L(T ) < ω

I (T , ω) = ω

1 < P(T ) ≤ ω
1 ≤ L(T ) ≤ ω

P(T ) + L(T ) = ω

I (T , ω) = ω1

1 < P(T ) ≤ ω
L(T ) = ω1,

existence of T
is unknown

I (T , ω) = 2ω

1 < P(T ) ≤ ω
L(T ) = 2ω
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Triples for distributions of countable models
of theories with continuum many types1

THEOREM (R.A. Popkov, S.V. Sudoplatov, 2015)

Assuming the continuum hypothesis, for any theory T in the class
Tc of theories with continuum many types, the triple
cm3(T ) = (P(T ), L(T ),NPL(T )) has one of the following values:
(1) (2ω, 2ω, λ), where λ ∈ ω ∪ {ω, 2ω};
(2) (0, 0, 2ω);
(3) (λ1, λ2, 2ω), where λ1 ≥ 1, λ1, λ2 ∈ ω ∪ {ω, 2ω}.
All these values have realizations in the class Tc .

1R.A. Popkov, S.V. Sudoplatov, Distributions of countable models of
complete theories with continuum many types, Siberian Electronic
Mathematical Reports. 2015. Vol. 12. P. 267–291.
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Classification of countable models with respect to two basic
characteristics

We consider two basic characteristics for the classification of
countable models of a theory:

Rudin–Keisler preorders ≤RK for isomorphism types of almost
prime models:

M(A) ≤RK M(B)⇔M(B) realizes tp(A);

distributions of limit models over equivalence classes of almost
prime models.

We obtain a classification for the class of small theories, with
respect to these characteristics.

The classification is generalized for the class Tc (with R.A. Popkov).
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Notations

∼RK 
≤RK ∩ ≤−1RK;

M̃ is the ∼RK -class containing the isomorphism type M for a
prime model over a finite set;

IL(M̃) is the number of limit models being unions of
elementary chains of models with isomorphism types in M̃.
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Characterization of I (T , ω) < ω with respect to limit
models2 3

Theorem
For any countable complete theory T , the following conditions are
equivalent:
(1) I (T , ω) < ω;
(2) T is small, |RK(T )| < ω and IL(M̃) < ω for any
M̃ ∈ RK(T )/∼RK.

2Sudoplatov S. V. Complete theories with finitely many countable models. I
// Algebra and Logic. — 2004. — Vol. 43, No. 1. — P. 62–69.

3Sudoplatov S. V. Classification of Countable Models of Complete
Theories. — Novosibirsk : NSTU, 2014, 2018.
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Characterization of I (T , ω) < ω with respect to limit models

If (1) or (2) holds then T possesses the following properties:
(a) RK(T ) has a least element M0 (an isomorphism type of a
prime model) and IL(M̃0) = 0;
(b) RK(T ) has a greatest ∼RK-class M̃1 (a class of isomorphism
types of all prime models over realizations of powerful types) and
|RK(T )| > 1 implies IL(M̃1) ≥ 1;
(c) if |M̃| > 1 then IL(M̃) ≥ 1.
Moreover, the following decomposition formula holds:

I (T , ω) = |RK(T )|+
|RK(T )/∼RK|−1∑

i=0

IL(M̃i ), (1)

where M̃0, . . . , ˜M|RK(T )/∼RK|−1 are all elements of the partially
ordered set RK(T )/∼RK.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



Examples of diagrams for Ehrenfeucht theories
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Examples of diagrams for Ehrenfeucht theories
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Generic constructions for structures and their theories

Realizing basic characteristics for the classification, we use syntactic
generalizations of semantic Jonsson–Fräıssé–Hrushovski–Herwig
generic constructions, based on syntactic amalgams.

Let Φ(A), Ψ(B), X(C ) be types (diagrams) in a class T0,
describing links between elements in finite sets A, B , C
respectively, with some (maybe empty) extra-information, and such
that Φ(A) ⊆ Ψ(B) ∩X(C ).

A (syntactic) amalgam of Ψ(B) and X(C ) over Φ(A) is a diagram
Θ(D) ∈ T0 such that Θ(D) ⊇ Ψ(B) ∪X(C ).

In particular, these diagrams can contain only inner descriptions for
finite structures A, B, C with universes A, B , C . In such a case, a
structure D with a universe D is a (semantic) amalgam of B and C
over A.
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Semantic amalgam

A

B C

D
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Semantic amalgam

A

B C

D
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Syntactic amalgam

Φ(A)

Ψ(B) X(C )

Θ(D)
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Syntactic amalgam

Φ(A)

Ψ(B) X(C )

Θ(D)
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Generic structures

We construct a generic structureM step-by-step using a given
class T0 of diagrams and of their amalgams such that all diagrams
in T0 are represented inM:

(1) every finite set A0 in the universe M ofM is extensible to a
finite set A ⊆ M with a diagram Φ(A) ∈ T0 satisfied inM:
M |= Φ(A);

(2) if A ⊆ M is a finite set, Φ(A),Ψ(B) ∈ T0,M |= Φ(A) and
Φ(A) 6 Ψ(B) (where 6 is a given upward directed partial order for
T0 coordinated with ⊆), then there exists a set B ′ ⊆ M such that
A ⊆ B ′ andM |= Ψ(B ′).
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Generic structures

Every finite part of the extra-information should be realized on
some step: if ∃xϕ(x) ∈ Φ(A) then there are B ⊇ A with
Ψ(B) ⊇ Φ(A) and an element b ∈ B such that ϕ(b) ∈ Ψ(B).

Finite steps approximate the required generic structure.
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Generic structures and generic theories

We form a required theory (with desirable properties) introducing
an appropriate class T0 of (in)complete diagrams.

If the process is organized uniformly then diagrams Φ(A) ∈ T0
force complete types tp(A).

It is natural to take diagrams with a minimal information including
atomic links by predicates and operations.

We put an information via the class T0 and obtain a generic theory
T such that models of T realize the information I . Here,
step-by-step we construct simultaneously a syntactic object T
collecting the required information I and a semantic objectM
realizing I .
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Generic constructions forcing given distributions of
countable models

There are natural examples but they do not cover all characteristics.

We illustrate the mechanism for realizations of basic characteristics
on the following examples.
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I (T , ω) = 3, P(T ) = 2, L(T ) = 1

0

1

. . .

∞

'

&

$

%
M0

'

&

$

%•aM(a)

'

&

$

%•��
��

��1
bi

Mi

i

'

&

$

%•PP
PP

PPi
bj

Mj

j

�
�
���

A
A
AAK

. . .
�
�
���

A
A
AAK

. . .
M

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



I (T , ω) = 3, P(T ) = 2, L(T ) = 1
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I (T , ω) = 3, P(T ) = 2, L(T ) = 1
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I (T , ω) = 3, P(T ) = 2, L(T ) = 1
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I (T , ω) = 3, P(T ) = 2, L(T ) = 1
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I (T , ω) = 3, P(T ) = 2, L(T ) = 1
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I (T , ω) = 3, P(T ) = 2, L(T ) = 1
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I (T , ω) = 3, P(T ) = 2, L(T ) = 1

We consider countably many disjoint colors 0, 1, . . . , n, . . . for
elements and directed links by colored arcs also with countably
many disjoint colors ordered by colors of elements.

For the theory T we have a prime modelM0 whose all elements
have finite colors.

Furthermore, there is a prime modelM(a) over a realization a of
the type describing the infinite color.

The modelM(a) has countably many essentially distinct
extensionsM(bi ) by arcs of colors i .

We introduce “bridges”, i.e., principal edges [bi , bj ], guaranteing
that any i-extensionMi =M(bi ) is equal to a j-extension
Mj =M(bj).

Having these bridges we obtain unique limit modelM (together
with two non-isomorphic almost prime modelsM0 andM(a)).
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I (T , ω) = 4, P(T ) = 2, L(T ) = 2
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I (T , ω) = 4, P(T ) = 2, L(T ) = 2
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I (T , ω) = 4, P(T ) = 2, L(T ) = 2

0

1

. . .

∞

'

&

$

%
M0

'

&

$

%•aM(a)

'

&

$

%•��
��

��1
b1

M1

1

'

&

$

%•PP
PP

PPi
b2

M2

�
2

6
1
•. . .

6
2
•. . .�

M∞
1 M∞

2

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



I (T , ω) = 4, P(T ) = 2, L(T ) = 2
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I (T , ω) = 4, P(T ) = 2, L(T ) = 2
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I (T , ω) = 4, P(T ) = 2, L(T ) = 2
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I (T , ω) = 4, P(T ) = 2, L(T ) = 2

Basing on the example of theory with three countable models we
consider again countably many disjoint colors 0, 1, . . . , n, . . . for
elements and directed links by colored arcs also with countably
many disjoint colors ordered by colors of elements.

For the theory T we have a prime modelM0 whose all elements
have finite colors.

Furthermore, there is a prime modelM(a) over a realization a of
the type describing the infinite color.

The modelM(a) has two essentially distinct extensions
M1 =M(b1) andM2 =M(b2) by arcs of colors 1 and 2
respectively.
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I (T , ω) = 4, P(T ) = 2, L(T ) = 2

We introduce arcs (b2, b1) guaranteing that any 2-extensionM2
includes a 1-extensionM1 but not vice versa.

Having these arcs we obtain two limit modelsM∞1 andM∞2
corresponding to elementary chains of 1-extensions and of
2-extensions (together with two non-isomorphic almost prime
modelsM0 andM(a)). HereM∞2 is saturated.
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, linear ≤RK

Basing on the previous examples, for two disjoint infinite unary
predicates P0 and P1, we consider countably many disjoint colors
0, 1, . . . , n, . . . for elements and directed links by colored arcs also
with countably many disjoint colors ordered by colors of elements.
Thus we have two non-isolated 1-types p1 and p2 realizing
predicates P0 and P1 by elements of infinite color.

For the theory T we have a prime modelM0 whose all elements
have finite colors.

Furthermore, there is a prime modelM1 =M(a) over a realization
a of the type p1 such thatM1 has a unique realization of p1.

The modelM(a) has an extensionM2 =M(b), where b is a
realization of p2. Moreover, having a and a realization a′ 6= a of p1
we obtain a model isomorphic toM2, w.l.o.g.M(b) =M(a, a′).

Extending the modelM2 by principal arcs we get unique limit
modelM3.
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, non-linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, non-linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, non-linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, non-linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, non-linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, non-linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, non-linear ≤RK
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I (T , ω) = 4, P(T ) = 3, L(T ) = 1, non-linear ≤RK

Again for two disjoint infinite unary predicates P0 and P1, we
consider countably many disjoint colors 0, 1, . . . , n, . . . for elements
and directed links by colored arcs also with countably many disjoint
colors ordered by colors of elements. We have two non-isolated
1-types p1 and p2 realizing predicates P0 and P1 by elements of
infinite color.

For the theory T we have a prime modelM0 whose all elements
have finite colors.

Furthermore, there is a prime modelM1 =M(a) over a realization
a of the type p1.

The modelM(a) has a proper extensionM2 =M(b) by a
principal arc (b, a), where b is a realization of p2 andM2 in not
isomorphic toM1.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



I (T , ω) = 4, P(T ) = 3, L(T ) = 1, non-linear ≤RK

Then the modelM2 has a proper extensionM′1 =M(a′) by a
principal arc (a′, b), where a′ is a realization of p1,M′1 has a
proper extensionM′2 =M(b′) by a principal arc (b′, a′), where b′

is a realization of p2, etc.

Extending the chain of almost prime models we get unique limit
modelM3.
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We consider a series of derivative objects used for a classification of
structures and their elementary theories:

Rudin–Keisler preorders and distribution functions for limit
models of a given theory, producing spectra of countable
models (with B.S. Baizhanov, B.Sh. Kulpeshov, and
V.V. Verbovskiy);

Topologies, closures, generating sets, e-spectra, ranks, and
approximations for families of theories with respect to
P-operators and E -operators (with B.Sh. Kulpeshov,
N.D. Markhabatov, and In.I. Pavlyuk).

Formulas for families of theories, and of their characteristics
(with In.I. Pavlyuk).

Arities of theories, their dynamics and characteristics with
respect to closures.
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Pseudo-supersimple theories 4 5 6

Definition (A. Tsuboi)

A stable theory T is pseudo-superstable if T fails to have the infinite
weight.

Similarly we say that a simple theory T is pseudo-supersimple if T fails
to have the infinite weight.
We generalize both the Tsuboi theorem for pseudo-superstable theories
and the Kim theorem for simple theories, obtaining

Theorem (B.S. Baizhanov, S.V. Sudoplatov, V.V. Verbovskiy, 2012)

Let T be a union of pseudo-supersimple theories Tn, where Tn ⊆ Tn+1,
n ∈ ω. Then I (T , ω) = 1 or I (T , ω) ≥ ω.

4A. Tsuboi, Countable models and unions of theories, J. Math. Soc. Japan. 1986.
Vol. 38, No. 3. P. 501–508.

5B. Kim , On the number of countable models of a countable supersimple theory,
J. London Math. Soc. 1999. Vol. 60, No. 2. P. 641–645.

6B. S. Baizhanov, S. V. Sudoplatov, V. V. Verbovskiy, Conditions for
non-symmetric relations of semi-isolation, Siberian Electronic Mathematical Reports.
2012. Vol. 9. P. 161–184.
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Weakly о-minimal structures7

Definition
A weakly o-minimal structure is a linearly ordered structure
M = 〈M,=, <, . . .〉 such that any definable (with parameters)
subset of the structure M is a finite union of convex sets inM.

We recall that such a structureM is said to be o-minimal if any
definable (with parameters) subset ofM is the union of finitely
many intervals and points inM.

7H.D. Macpherson, D. Marker, and C. Steinhorn, Weakly o-minimal
structures and real closed fields // Transactions of The American
Mathematical Society, 352 (2000), pp. 5435–5483.
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Weakly orthogonal types8

Definition

Assuming thatM is an |A|+-saturated weakly o-minimal structure,
A,B ⊆ M, and p, q ∈ S1(A) are non-algebraic types, we say that p
is not weakly orthogonal to q (p 6⊥w q) if there are an A-definable
formula H(x , y), a ∈ p(M), and b1, b2 ∈ q(M) such that
b1 ∈ H(M, a) and b2 6∈ H(M, a).

Lemma (B.S. Baizhanov)

The relation 6⊥w of the weak non-orthogonality is an equivalence
relation on S1(A).

8B.S. Baizhanov, Expansion of a model of a weakly o-minimal theory by a
family of unary predicates // The Journal of Symbolic Logic, 66 (2001), pp.
1382–1414.
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Quite о-minimal theories9

Definition
We say that p is not quite orthogonal to q (p 6⊥q q) if there is an
A-definable bijection f : p(M)→ q(M).
We say that a weakly o-minimal theory is quite o-minimal if the
relations of weak and quite orthogonality coincide for 1-types over
arbitrary sets of models of the given theory.

9B.Sh. Kulpeshov, Convexity rank and orthogonality in weakly o-minimal
theories // News of the National Academy of Sciences of the Republic of
Kazakhstan, physical and mathematical series, 227 (2003), pp. 26–31.
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Quite o-minimal theories with few countable models10

We say that a quite о-minimal theory T has few countable models
if T has fewer than 2ω countable models up to isomorphisms.

Theorem
Let T be a quite o-minimal theory in a countable language. Then
either T has 2ω countable models or T has exactly 3k · 6s

countable models, where k and s are natural numbers. Moreover,
for any k , s ∈ ω there is a quite o-minimal theory T with exactly
3k · 6s countable models.

Theorem above generalizes the known Mayer’s theorem on
countable models of o-minimal theories: L.L. Mayer, Vaught’s
conjecture for o-minimal theories // The Journal of Symbolic
Logic, 53 (1988), pp. 146–159.

10B.Sh. Kulpeshov, S.V. Sudoplatov, Vaught’s conjecture for quite o-minimal
theories // Annals of Pure and Applied Logic, 2017. Vol. 168, N 1. P. 129-149.
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Quite o-minimal theories with I (T , ω) = 3 and I (T , ω) = 6
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Quite o-minimal theories with I (T , ω) = 32 and
I (T , ω) = 33
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Quite o-minimal theories with I (T , ω) = 62 and
I (T , ω) = 63
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Quite o-minimal theories with I (T , ω) = 3 · 6 and
I (T , ω) = 32 · 6

j•

•j

�
�
�
�
�
�
�

@
@
@@

�
�
�
�
�
�
�

@
@

@@

@
@
@@

••

•

•

jj
j
j

0

1 0

7

1 3

•i

•i •i

�
�
�
�
�
�
�

@
@
@@

@
@
@@

•i
•i

•i •i
•i

•i
•i

•i

•i

�
�
�
�
�
�
�

@
@

@@
@

@
@@

�
�
�
�
�
�
�

@
@
@@

@
@

@@

�
�
�
�
�
�
�

0

1 0

1

7

11

1

3 1

7

3

7

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



Quite o-minimal theories with I (T , ω) = 3 · 62
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Decomposition formula (with B.Sh. Kulpeshov) 11 12

Applying Theorem on numbers of countable models for quite
o-minimal theories we have the following representation of
Decomposition formula (1):

3k · 6s = 2k · 3s +
k∑

t=0

s∑
m=0

2s−m · (2t · 4m − 1) · C t
k · Cm

s .

11B.Sh. Kulpeshov, S.V. Sudoplatov, Distributions of countable models of
quite o-minimal Ehrenfeucht theories, Еurasian Mathematical Journal. 2020.
Vol. 11, No. 3. P. 66–78.

12S.V. Sudoplatov, Distributions of countable models of disjoint unions of
Ehrenfeucht theories, Lobachevskii Journal of Mathematics. 2021. Vol. 42, No.
1. P. 195–205.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



Topologies, closures, generating sets e-spectra, ranks, and
approximations for families of theories: references

S.V. Sudoplatov, Combinations of structures, The Bulletin of Irkutsk State
University. Series “Mathematics”. 2018. Vol. 24. P. 65–84.

S.V. Sudoplatov, Closures and generating sets related to combinations of
structures, The Bulletin of Irkutsk State University. Series “Mathematics”. 2016.
Vol. 16. P. 131–144.

S.V. Sudoplatov, Families of language uniform theories and their generating
sets, The Bulletin of Irkutsk State University. Series “Mathematics”. 2016.
Vol. 17. P. 62–76.

S.V. Sudoplatov, On semilattices and lattices for families of theories, Siberian
Electronic Mathematical Reports. 2017. Vol. 14. P. 980–985.

S.V. Sudoplatov, Combinations related to classes of finite and countably
categorical structures and their theories, Siberian Electronic Mathematical
Reports. 2017. Vol. 14. P. 135–150.

S.V. Sudoplatov, Relative e-spectra, relative closures, and semilattices for
families of theories, Siberian Electronic Mathematical Reports. 2017. Vol. 14.
P. 296–307.

In.I. Pavlyuk, S.V. Sudoplatov, Families of theories of abelian groups and their
closures, Bulletin of Karaganda University. Mathematics. 2018. Vol. 92, N 4.
P. 72–78.
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Topologies, closures, generating sets e-spectra, ranks, and
approximations for families of theories: references

N.D. Markhabatov, S.V. Sudoplatov, Algebras for definable families
of theories, Siberian Electronic Mathematical Reports. 2019.
Vol. 16. P. 600-608.
In.I. Pavlyuk, S.V. Sudoplatov, Ranks for families of theories of
abelian groups, The Bulletin of Irkutsk State University. Series
“Mathematics”. 2019. Vol. 28. P. 96–113.
S.V. Sudoplatov, Approximations of theories, Siberian Electronic
Mathematical Reports. 2020. Vol. 17. P. 715–725.
In.I. Pavlyuk, S.V. Sudoplatov, Approximations for Theories of
Abelian Groups, Mathematics and Statistics. 2020. Vol. 8, No. 2.
P. 220–224.
N.D. Markhabatov, S.V. Sudoplatov, Definable subfamilies of
theories, related calculi and ranks, Siberian Electronic Mathematical
Reports. 2020. Vol. 17. P. 700–714.
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Topologies, closures, generating sets e-spectra, ranks, and
approximations for families of theories: references

B.Sh. Kulpeshov, S.V. Sudoplatov, P-combinations of ordered theories,
Lobachevskii Journal of Mathematics. 2020. Vol. 41, No. 2. P. 227–237.

S.V. Sudoplatov, Hierarchy of families of theories and their rank
characteristics, Bulletin of Irkutsk State University. Series Mathematics.
2020. Vol. 33. P. 80–95.

N.D. Markhabatov, S.V. Sudoplatov, Topologies, ranks, and closures for
families of theories. I, Algebra and Logic. 2021. Vol. 59, No. 6.
P. 437–455.

N.D. Markhabatov, S.V. Sudoplatov, Topologies, ranks, and closures for
families of theories. II, Algebra and Logic. 2021. Vol. 60, No. 1. P. 38–52.

N.D. Markhabatov, S.V. Sudoplatov, Ranks for families of all theories of
given languages, Еurasian Mathematical Journal. 2021. Vol. 12, No. 2.
P. 52–58.

S.V. Sudoplatov, Ranks for families of theories and their spectra,
Lobachevskii Journal of Mathematics. 2021. Vol. 42, N 12. P. 2959-2968.
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P-combinations

Let P = (Pi )i∈I , be a family of nonempty unary predicates, (Ai )i∈I
be a family of structures such that Pi is the universe of Ai , i ∈ I ,
and the symbols Pi are disjoint with languages for the structures
Aj , j ∈ I . The structure AP 


⋃
i∈I
Ai expanded by the predicates

Pi is the P-union of the structures Ai , and the operator mapping
(Ai )i∈I to AP is the P-operator. The structure AP is called the
P-combination of the structures Ai and denoted by CombP(Ai )i∈I
if Ai = (AP |Ai )|Σ(Ai ), i ∈ I . Structures A′, which are elementary
equivalent to CombP(Ai )i∈I , will be also considered as
P-combinations.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



P-combinations

Clearly, all structures A′ ≡ CombP(Ai )i∈I are represented as
unions of their restrictions A′i = (A′|Pi )|Σ(Ai ) if and only if the set
p∞(x) = {¬Pi (x) | i ∈ I} is inconsistent. If A′ 6= CombP(A′i )i∈I ,
we write A′ = CombP(A′i )i∈I∪{∞}, where A′∞ = A′|⋂

i∈I
Pi
, maybe

applying Morleyzation. Moreover, we write CombP(Ai )i∈I∪{∞} for
CombP(Ai )i∈I with the empty structure A∞.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



P-combinations

Note that if all predicates Pi are disjoint, a structure AP is a
P-combination and a disjoint union of structures Ai . In this case
the P-combination AP is called disjoint. Clearly, for any disjoint
P-combination AP , Th(AP) = Th(A′P), where A′P is obtained
from AP replacing Ai by pairwise disjoint A′i ≡ Ai , i ∈ I . Thus, in
this case, similar to structures the P-operator works for the theories
Ti = Th(Ai ) producing the theory TP = Th(AP), being
P-combination of Ti , which is denoted by CombP(Ti )i∈I . In
general, for non-disjoint case, the theory TP will be also called a
P-combination of the theories Ti , but in such a case we will keep in
mind that this P-combination is constructed with respect (and
depending) to the structure AP , or, equivalently, with respect to
any/some A′ ≡ AP .

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



E -combinations

For an equivalence relation E replacing disjoint predicates Pi by
E -classes we get the structure AE being the E-union of the
structures Ai . In this case the operator mapping (Ai )i∈I to AE is
the E-operator. The structure AE is also called the E-combination
of the structures Ai and denoted by CombE (Ai )i∈I ; here
Ai = (AE |Ai )|Σ(Ai ), i ∈ I . Similar above, structures A′, which are
elementary equivalent to AE , are denoted by CombE (A′j)j∈J ,
where A′j are restrictions of A′ to its E -classes. The E -operator
works for the theories Ti = Th(Ai ) producing the theory
TE = Th(AE ), being E-combination of Ti , which is denoted by
CombE (Ti )i∈I or by CombE (T ), where T = {Ti | i ∈ I}.
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E -combinations

Clearly, A′ ≡ AP realizing p∞(x) is not elementary embeddable
into AP and can not be represented as a disjoint P-combination of
A′i ≡ Ai , i ∈ I . At the same time, there are E -combinations such
that all A′ ≡ AE can be represented as E -combinations of some
A′j ≡ Ai . We call this representability of A′ to be the
E-representability.
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E -combinations

If there is A′ ≡ AE which is not E -representable, we have the
E ′-representability replacing E by E ′ such that E ′ is obtained from
E adding equivalence classes with models for all theories T , where
T is a theory of a restriction B of a structure A′ ≡ AE to some
E -class and B is not elementary equivalent to the structures Ai .
The resulting structure AE ′ (with the E ′-representability) is a
e-completion, or a e-saturation, of AE . The structure AE ′ itself is
called e-complete, or e-saturated, or e-universal, or e-largest.
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e-spectrum

For a structure AE the number of new structures with respect to
the structures Ai , i. e., of the structures B which are pairwise
elementary non-equivalent and elementary non-equivalent to the
structures Ai , is called the e-spectrum of AE and denoted by
e-Sp(AE ). The value sup{e-Sp(A′) | A′ ≡ AE} is called the
e-spectrum of the theory Th(AE ) and denoted by e-Sp(Th(AE )).
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e-prime, e-minimal, and e-least structures

If AE does not have E -classes Ai , which can be removed, with all
E -classes Aj ≡ Ai , preserving the theory Th(AE ), then AE is
called e-prime, or e-minimal.

For a structure A′ ≡ AE we denote by TH(A′) the set of all
theories Th(Ai ) of E -classes Ai in A′.

By the definition, an e-minimal structure A′ consists of E -classes
with a minimal set TH(A′). If TH(A′) is the least for models of
Th(A′) then A′ is called e-least.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



E -closures

Definition. Let T be the class of all complete elementary theories
of relational languages. For a set T ⊂ T we denote by ClE (T ) the
set of all theories Th(A), where A is a structure of some E -class in
A′ ≡ AE , AE = CombE (Ai )i∈I , Th(Ai ) ∈ T . As usual, if
T = ClE (T ) then T is said to be E-closed.

The operator ClE of E -closure can be naturally extended to the
classes T ⊂ T as follows: ClE (T ) is the union of all ClE (T0) for
subsets T0 ⊆ T .

For a set T ⊂ T of theories in a language Σ and for a sentence ϕ
with Σ(ϕ) ⊆ Σ we denote by Tϕ the set {T ∈ T | ϕ ∈ T}.
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E -closures

Proposition

If T ⊂ T is an infinite set and T ∈ T \ T then T ∈ ClE (T ) (i.e.,
T is an accumulation point for T with respect to E -closure ClE ) if
and only if for any formula ϕ ∈ T the set Tϕ is infinite.
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Least generating sets

Theorem
If T ′0 is a generating set for a E -closed set T0 then the following
conditions are equivalent:
(1) T ′0 is the least generating set for T0;
(2) T ′0 is a minimal generating set for T0;
(3) any theory in T ′0 is isolated by some set (T ′0 )ϕ, i.e., for any
T ∈ T ′0 there is ϕ ∈ T such that (T ′0 )ϕ = {T};
(4) any theory in T ′0 is isolated by some set (T0)ϕ, i.e., for any
T ∈ T ′0 there is ϕ ∈ T such that (T0)ϕ = {T}.
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Ranks for families of theories

For the empty family T we put the rank RS(T ) = −1, for finite
nonempty families T we put RS(T ) = 0, and for infinite families
T — RS(T ) ≥ 1.
For a family T and an ordinal α = β + 1 we put RS(T ) ≥ α if
there are pairwise inconsistent Σ(T )-sentences ϕn, n ∈ ω, such
that RS(Tϕn) ≥ β, n ∈ ω.
If α is a limit ordinal then RS(T ) ≥ α if RS(T ) ≥ β for any β < α.
We set RS(T ) = α if RS(T ) ≥ α and RS(T ) 6≥ α + 1.
If RS(T ) ≥ α for any α, we put RS(T ) =∞.
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Totally transcendental families of theories

A family T is called e-totally transcendental, or totally
transcendental, if RS(T ) is an ordinal.
If T is totally transcendental, with RS(T ) = α ≥ 0, we define the
degree ds(T ) of T as the maximal number of pairwise inconsistent
sentences ϕi such that RS(Tϕi ) = α.

Theorem
For any family T with |Σ(T )| ≤ ω the following conditions are
equivalent:
(1) |ClE (T )| = 2ω;
(2) e-Sp(T ) = 2ω;
(3) RS(T ) =∞;
(4) there exists a 2-tree of sentences ϕ for s-definable properties
Pϕ.
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Families of all theories of given languages

Theorem (N.D. Markhabatov, S.V. Sudoplatov)

For any language Σ either RS(TΣ) is finite, if Σ consists of finitely
many 0-ary and unary predicates, and finitely many constant
symbols, or RS(TΣ) =∞, otherwise.
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Approximations of theories of abelian groups

Theorem (In.I. Pavlyuk< S.V. Sudoplatov)

For any theory T of abelian groups the following conditions are
equivalent:
(1) T is pseudofinite;
(2) T has some infinite αp,n, or some βp = γp = ω, or ε = 1,
moreover, for all nonzero values βp and γp, βp = γp = ω;
(3) T has infinite models, and all nonzero values βp and γp imply
βp = γp = ω.

Corollary
If a theory T of an abelian group has a positive natural value βp or
γp then models of T are not pseudofinite.

Since Th(Z) has values γp = 1, the group Z is not pseudofinite.
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Characterizations and descriptions of formulae for families of
theories, and of their characteristics: references

S.V. Sudoplatov, Formulas and properties, their links and
characteristics, Mathematics. 2021, Vol. 9, Issue 12. 1391.
16 pp.
In.I. Pavlyuk, S.V. Sudoplatov, Formulas and properties for
families of theories of abelian groups, Bulletin of Irkutsk State
University, Series Mathematics. 2021. Vol. 36. P. 95–109.
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Semantic and syntactic properties, their links with formulas

Definition. Let Σ be a language, ϕ
 ϕ(x) be a formula in F (Σ),
Ps be a subclass of the class K (Σ) of all structures A in the
language Σ. We say that ϕ(x) partially (respectively, totally)
satisfies Ps , denoted by ϕ�ps Ps or ϕ�∃s Ps (ϕ�ts Ps or ϕ�∀s Ps),
if there are A ∈ Ps and a ∈ A (for any A ∈ Ps there is a ∈ A) such
that A |= ϕ(a).
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Semantic and syntactic properties, their links with formulas

If Pis is a subclass of the class ITK(Σ) of isomorphism types for
the class K (Σ) then we say that ϕ(x) partially (respectively,
totally) satisfies Pits, denoted by ϕ�pits Pits or ϕ�∃its Pits
(ϕ�tits Pits or ϕ�∀its Pits) if ϕ�ps Ps (ϕ�ts Ps , where Ps consists
of all structures whose isomorphism types belong to Pits. If Pt is a
subset of the set TΣ of all complete theories in the language Σ then
we say that ϕ(x) partially (respectively, totally) satisfies Pt ,
denoted by ϕ�pt Pt or ϕ�∃t Pt (ϕ�tt Pt or ϕ�∀t Pt), if there are
T ∈ Pt ,M |= T , and a ∈ M (for any T ∈ Pt there areM |= T
and a ∈ M) such thatM |= ϕ(a).
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Semantic and syntactic properties, their links with formulas

For a property Ps we denote by ITK(Ps) the class of isomorphism
types for structures in Ps , and by Th(Ps) the set
{T ∈ TΣ | A |= T for some A ∈ Ps}. For a property Pits we denote
by K (Pits) the class of all structures whose isomorphism types are
represented in Pits, and by Th(Pits) the set Th(K (Pits)). For a
property Pt we denote by K (Pt) the class of all models of theories
in Pt , and by ITK(Pt) the class ITK(K (Pt)).
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Semantic and syntactic properties, their links with formulas

Proposition

For any formula ϕ ∈ F (Σ) and properties Ps , Pits, Pt the following
conditions hold:
(1) ϕ�ps Ps iff ϕ�pits ITK(Ps), and iff ϕ�pt Th(Ps);
(2) ϕ�ts Ps iff ϕ�tits ITK(Ps), and iff ϕ�tt Th(Ps);
(3) ϕ�pits Pits iff ϕ�ps K (Pits), and iff ϕ�pt Th(Pits);
(4) ϕ�tits Pits iff ϕ�ts K (Pits), and iff ϕ�tt Th(Pits);
(5) ϕ�pt Pt iff ϕ�ps K (Pt), and iff ϕ�pits ITK(Pt);
(6) ϕ�tt Pt iff ϕ�ts K (Pt), and iff ϕ�tits ITK(Pt).
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Semantic and syntactic properties, their links with formulas

In the items (3) and (4) the class K (Pits) can be replaced by a
subclass K ′ such that ITK(K ′) = Pits. Similarly, in the items (5)
and (6) the class K (Pt) can be replaced by a subclass K ′ such that
Th(K ′) = Pt , and independently ITK(Pt) can be replaced by a
subclass K ′′ such that Th(K ′′) = Pt .
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Semantic and syntactic properties, their links with formulas

By Proposition above semantic properties Ps and Pits can be
naturally transformed into syntactic ones Pt , and vice versa. It
means that natural model-theoretic properties such as
ω-categoricity, stability, simplicity etc. can be formulated both for
theories, for structures and for their isomorphism types. The links
between �-relations which pointed out in Proposition 6 allow to
reduce our consideration to the relations �pt and �tt. Besides, for
the simplicity we will principally consider sentences ϕ instead of
formulas in general. Reductions of formulas ψ(x) to sentences use
the operators ψ(x) 7→ ∀x ψ(x) and ψ(x) 7→ ∃x ψ(x).
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Formulas, properties and E -closures

Theorem
For any sentence ϕ ∈ Sent(Σ) and a property Pt ⊆ TΣ the
following conditions are equivalent:
(1) ϕ�pt Pt ,
(2) ϕ�pt ClE (Pt),
(3) ϕ�pt P ′t for any/some P ′t with ClE (P ′t) = ClE (Pt).
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Formulas, properties and E -closures

Theorem
For any sentence ϕ ∈ Sent(Σ) and a property Pt ⊆ TΣ the
following conditions are equivalent:
(1) ϕ�tt Pt ,
(2) ϕ�tt ClE (Pt),
(3) ϕ�tt P ′t for any/some P ′t with ClE (P ′t) = ClE (Pt).
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Corollaries

Corollary
For any properties P1,P2 ⊆ TΣ the following conditions hold:
(1) there exists ϕ ∈ Sent(Σ) such that ϕ�pt P1 and ¬ϕ�pt P2 iff
P1 and P2 are nonempty and |P1 ∪ P2| ≥ 2; in particular, there
exists ϕ ∈ Sent(Σ) such that ϕ�pt P1 and ¬ϕ�pt P1 iff |P1| ≥ 2;
(2) there exists ϕ ∈ Sent(Σ) such that ϕ�tt P1 and ¬ϕ�tt P2 iff
ClE (P1) ∩ ClE (P2) = ∅.
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Corollaries

Corollary
For any nonempty property Pt ⊆ TΣ the following conditions hold:
(1) the set

⋂
Pt forms a filter

⋂
Pt/≡ on {≡(ϕ) | ϕ ∈ Sent(Σ)}

with respect to `;
(2) the filter

⋂
Pt/≡ is principal iff

⋂
Pt is forced by some its

sentence, i.e.,
⋂

Pt is a finitely axiomatizable theory, which is
incomplete for |Pt | ≥ 2;
(3) the filter

⋂
Pt/≡ is an ultrafilter iff Pt is a singleton.
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Ranks and spectra for sentences and properties

Definition. For a sentence ϕ ∈ Sent(Σ) and a property
P = Pt ⊆ TΣ we put RSP(ϕ) = RS(Pϕ), and dsP(ϕ) = ds(Pϕ) if
ds(Pϕ) is defined.
If P = TΣ then we omit P and write RS(ϕ), ds(ϕ) instead of
RSP(ϕ) and dsP(ϕ), respectively.
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Ranks and spectra for sentences and properties

Definition. For a sentence ϕ ∈ Sent(Σ) and a property P ⊆ TΣ we
say that ϕ is P-totally transcendental if RSP(ϕ) is an ordinal.
A sentence ϕ is co-(P)-totally transcendental if ¬ϕ is P-totally
transcendental.
We omit P and say about totally transcendental and co-totally
transcendental sentences if P = TΣ.

Theorem
For a language Σ there is a totally transcendental sentence
ϕ ∈ Sent(Σ) iff Σ has finitely many predicate symbols.
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Ranks and spectra for sentences and properties

Definition. For a language Σ, a property P ⊆ TΣ, an ordinal α and
a natural number n ≥ 1, a sentence ϕ ∈ Sent(Σ) is called
(P, α, n)-(co-)rich if RSP(ϕ) = α and dsP(ϕ) = n (respectively,
RSP(¬ϕ) = α and dsP(¬ϕ) = n).
A sentence ϕ ∈ Sent(Σ) is called (P,∞)-(co-)rich if RSP(ϕ) =∞
(respectively, RSP(¬ϕ) =∞).
If P = TΣ we write that ϕ is (α, n)-(co-)rich instead of
(P, α, n)-(co-)rich, and ∞-(co-)rich instead of (P,∞)-(co-)rich.
If for a property P there is a (P, ∗)-(co-)rich sentence ϕ, we say
that P has a (P, ∗)-(co-)rich sentence, where ∗ = α, n or α =∞.
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Ranks and spectra for sentences and properties

Theorem
(1) If a property P ⊆ TΣ has a (P, α,m)-rich sentence ϕ which is
(P, β, n)-co-rich then RS(P) = max{α, β}, ds(P) = m for α > β,
ds(P) = n for α < β, and ds(P) = m + n for α = β.
(2) If for a property P ⊆ TΣ, RS(P) = α and ds(P) = n, then for
each sentence ϕ ∈ Sent(Σ) the following assertions hold:
(i) RSP(ϕ) ≤ α,
(ii) if RSP(ϕ) = α then ϕ is (P, α,m)-rich for some m ≤ n, and
for m = n either ϕ�tt P or ϕ is (P, β, k)-co-rich for some β < α
and k ∈ ω, and if m < n then ϕ is (P, α, n −m)-co-rich.
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Ranks and spectra for sentences and properties

By Theorem 11 for any e-totally transcendental property P and any
α ≤ RS(P) there are s-definable subfamilies Pϕ with RS(Pϕ) = α.
Similarly all values m ≤ ds(P) are also realized by appropriate
s-definable subfamilies.
Thus the spectrum SpRd(P) for the pairs (RSP(ϕ), dsP(ϕ)) with
nonempty Pϕ forms the set

{(RS(P),m) | 1 ≤ m ≤ ds(P)}∪{(α,m) | α < RS(P),m ∈ ω\{0}},

which is an initial segment O[(β, n)] consisting of all pairs
(α,m) ∈ Ord× (ω \ 0) with α ≤ β and m ≤ n for α = β,
RS(P) = β, ds(P) = n.
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Ranks and spectra for sentences and properties

Theorem
For any nonempty property P ⊆ TΣ one of the following
possibilities holds for some β ∈ Ord and n ∈ ω \ {0}:
(1) SpRd(P) = O[(β, n)],
(2) SpRd(P) = {∞},
(3) SpRd(P) = O[(β, n)] ∪ {∞}.
All possibilities above are realized by appropriate languages Σ and
properties P ⊆ TΣ.
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Ranks and spectra for sentences and properties

The following theorem is shown in: Markhabatov N. D., Sudoplatov
S. V. Ranks for families of all theories of given languages //
Eurasian Mathematical Journal. — 2021. — Vol. 12, No. 2.

Theorem
Let T be a family of a countable language Σ and with RS(T ) =∞,
α be a countable ordinal, n ∈ ω \ {0}. Then there is a d∞-definable
subfamily T ∗ ⊂ T such that RS(T ∗) = α and ds(T ∗) = n.

The latter two Theorems immediately imply:

Corollary
Let T be a family of a countable language Σ and with
RS(T ) =∞, α be a countable ordinal, n ∈ ω \ {0}. Then there is
a d∞-definable property P ⊂ T such that SpRd(P) = O[(α, n)].
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Links between sentences and properties

For a cardinality λ ≥ 1, a sentence ϕ ∈ Sent(Σ) and a property
P ⊆ TΣ we write ϕ�λ

pt P if ϕ satisfies exactly λ theories in P , i.e.,
|Pϕ| = λ.
By the definition if P 6= ∅ and ϕ�tt P then ϕ�

|P|
pt P , and

conversely ϕ�
|P|
pt P implies ϕ�tt P for finite P . For infinite P the

converse implication can fail. Moreover, since infinite sets can be
divided into two parts of same cardinality, one can easily introduce
an expansion P ′ of P by a 0-ary predicate Q such that Q �

|P′|
pt P ′

and ¬Q �
|P′|
pt P ′, implying that Q 6 �ttP ′.
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Spectra for properties

For a property P we denote by Sppt(P) the set {λ | ϕ�λ
pt P for

some sentence ϕ}. This set is called the pt-spectrum of P .

Theorem
For any nonempty property P ⊆ TΣ one of the following conditions
holds:
(1) Sppt(P) = (n + 1) \ {0} for some n ∈ ω \ {0}; it is satisfied iff
P is finite with |P| = n;
(2) Sppt(P) = Y ∪ (n + 1) \ {0} for some nonempty set Y ⊆ |P| of
infinite cardinalities and n ∈ ω \ {0};
(3) Sppt(P) = Y ∪ ω \ {0} for some nonempty set Y ⊆ |P| of
infinite cardinalities;
(4) Sppt(P) = Y for some nonempty set Y ⊆ |P| of infinite
cardinalities.
All values (n + 1) \ {0}, Y ∪ (n + 1) \ {0}, Y ∪ ω \ {0}, and Y , for
a nonempty set Y of infinite cardinalities and n ∈ ω \ {0}, are
realized as Sppt(P) for an appropriate property P .
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Spectra for properties

Theorem
For any nonempty E -closed property P ⊆ TΣ with at most
countable language Σ one of the following possibilities holds:
(1) Sppt(P) = (n + 1) \ {0} for some n ∈ ω \ {0}, if P is finite
with |P| = n;
(2) Sppt(P) = {2ω} ∪ (n + 1) \ {0} for some n ∈ ω, if P is infinite
and has n isolated points;
(3) Sppt(P) = (ω + 1) \ {0}, if P is infinite and totally
transcendental;
(4) Sppt(P) = {ω, 2ω} ∪ ω \ {0}, if P has an infinite totally
transcendental definable subfamily but P itself is not totally
transcendental;
(5) Sppt(P) = {2ω} ∪ ω \ {0}, if P has infinitely many isolated
points but does not have infinite totally transcendental definable
subfamilies.
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Generic sentences

Definition. (Cf. 13) For a property P ⊆ TΣ a sentence
ϕ ∈ Sent(Σ) is called P-generic if RSP(ϕ) = RS(P), and
dsP(ϕ) = ds(P) if ds(P) is defined.
If P = TΣ then we omit P and a P-generic sentence is called
generic.

13Poizat, B. Groupes Stables. Nur Al-Mantiq Wal-Ma’rifah: Villeurbanne,
France 1987. Truss, J.K. Generic Automorphisms of Homogeneous Structures
// Proceedings of the London Mathematical Society. 1992, 65:3, 121–141.
Tent, K., Ziegler, M. A Course in Model Theory // Lecture Notes in Logic. No.
40. Cambridge University Press: Cambridge, UK, 2012.
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Generic sentences

Proposition

Any P-generic sentence ϕ is (P,RS(P), ds(P))-rich if RS(P) is an
ordinal, and (P,∞)-rich if RS(P) =∞. And vice versa, each
(P,RS(P), ds(P))-rich sentence, for an ordinal RS(P), is
P-generic, and each (P,∞)-rich sentence, for RS(P) =∞, is
P-generic.

Corollary

If a property P ⊆ TΣ is finite and ϕ ∈ Sent(Σ) then ϕ�tt P iff ϕ is
P-generic.
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Generic sentences

Proposition

For a property P ⊆ TΣ there is a P-generic sentence ϕ ∈ Sent(Σ)
with minimal/least Pϕ iff P is finite. If that ϕ exists then Pϕ = P .

Corollary

For any property P ⊆ TΣ with RS(P) = α ∈ Ord and any sentence
ϕ ∈ Sent(Σ) either ϕ is P-generic or ¬ϕ is P-generic, or, for
ds(P) > 1 with non-P-generic ϕ and ¬ϕ, ϕ is represented as a
disjunction of k (P, α, 1)-rich sentences and ¬ϕ is represented as a
disjunction of m (P, α, 1)-rich sentences such that k + m = ds(P),
k > 0, m > 0.
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Generic sentences

Theorem
(1) For any nonempty property P ⊆ TΣ there are ds(P) P-generic
theories if P is totally transcendental, and at least continuum many
if P is not totally transcendental. In the latter case either all
theories in P are P-generic if SpRd(P) = {∞}, or P has at least
β · ω + n non-P-generic theories if SpRd(P) = O[(β, n)] ∪ {∞}.
(2) The CB-rank of each P-generic theory equals RS(P).
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Generic sentences

Definition. For a property P ⊆ TΣ a sentence ϕ ∈ Sent(Σ) is
called P-complete if ϕ isolates a unique theory T in P , i.e., Pϕ is a
singleton. In such a case the theory T ∈ Pϕ is called P-finitely
axiomatizable (by the sentence ϕ).

Proposition
For any nonempty property P ⊆ TΣ a P-finitely axiomatizable
theory T is P-generic iff P is finite.
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Basedness of a theory

Definition 14. A theory T is said to be ∆-based, where ∆ is some
set of formulas without parameters, if any formula of T is
equivalent in T to a Boolean combination of formulas in ∆.
For ∆-based theories T , it is also said that T has quantifier
elimination or quantifier reduction up to ∆.

14Palyutin E. A., Saffe J., Starchenko S. S. Models of superstable Horn
theories // Algebra and Logic. — 1985. — Vol. 24, No. 3. — P. 171–210.
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Arities of formulae and theories

Definition. An elementary theory T is called unary, or 1-ary, if any
T -formula ϕ(x) is T -equivalent to a Boolean combination of
T -formulas, each of which is of one free variable, and of formulas
of form x ≈ y .
For a natural number n ≥ 1, a formula ϕ(x) of a theory T is called
n-ary, or an n-formula, if ϕ(x) is T -equivalent to a Boolean
combination of T -formulas, each of which is of n free variables.
For a natural number n ≥ 2, an elementary theory T is called
n-ary, or an n-theory, if any T -formula ϕ(x) is n-ary.
A theory T is called binary if T is 2-ary, it is called ternary if T is
3-ary, etc.
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Arities of formulae and theories

We will admit the case n = 0 for n-formulae ϕ(x). In such a case
ϕ(x) is just T -equivalent to a sentence ∀xϕ(x).
If T is a theory such that T is n-ary and not (n − 1)-ary then the
value n is called the arity of T and it is denoted by ar(T ). If T
does not have any arity we put ar(T ) =∞.
Similarly, for a formula ϕ of a theory T we denote by arT (ϕ) the
natural value n if ϕ is n-ary and not (n − 1)-ary. If ϕ does not any
arity we put arT (ϕ) =∞. If a theory T is fixed we write ar(ϕ)
instead of arT (ϕ).

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



Arities of formulae and theories

By the definition any n-theory is ∆n-based, where ∆n consists of
formulae with n free variables and formulae of the form x ≈ y . It
implies that theories of n-element modelsM are n-ary and based
by formulae describing these n-element structures and
differences/coincidences of elements.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



Arities of formulae and theories

Proposition

A T -formula ϕ(x) is not n-ary if and only if for any T -formulae ψi (x i )
with subtuples x i of the tuple x having l(x i ) = n and
T ` ϕ(x)→ ψi (x i ), there exists a tuple a ∈M |= T such that
M |= ψi (ai ) ∧ ¬ϕ(a), where ai is a subtuple of a consisting of
substitutions of elements of a instead of correspondent elements of x i .

Proposition

A theory T of a language Σ is n-ary if and only if for any T -formula ϕ(x)
there is a finite sublanguage Σ′ ⊆ Σ such that T ` ϕ(x)↔ ψ(x), where
ψ(x) is a Boolean combination of n-formulae.
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Cartesian and mixed products, and sums

Since negations of formulas with n free variables again have n free
variables, witnessing the n-arity of a formula it suffices to consider
positive Boolean combinations of formulas with n free variables,
i.e., conjunctions and disjunctions of formulas with n free variables.
Thus for the description of definable sets for modelsM of
n-theories it suffices describe links between definable sets A and B
for n-formulas ϕ(x) and ψ(y), respectively, and definable sets C
and D for ϕ(x) ∧ ψ(y) and ϕ(x) ∨ ψ(y), respectively.
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Cartesian and mixed products, and sums

If x = y then C = A ∩ B and D = A ∪ B , i.e., conjunctions and
disjunctions work as set-theoretic intersections and unions.
If x and y are disjoint then C = A× B and D = (A + B)M 

{〈a, b〉 | a ∈ A and b ∈ M, or a ∈ M and b ∈ B}, i.e., C is the
Cartesian product of A and B , and D is the (generalized) Cartesian
sum of A and B in the modelM.
If x 6= y , and x and y have common variables, then C and D are
represented as a mixed product and a mixed sum, respectively,
working partially as intersection and union, for common variables,
and partially as Cartesian product and Cartesian sum, for disjoint
variables.
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Cylinders and projections

If x and y consist of pairwise disjoint variables and x ( y then for
any formula ϕ(x) the set of solution of the formula ϕ(x) ∧ (y ≈ y)
inM is called a cylinder with respect to M l(y) and generated by
the set of solutions ϕ(M). In any case generating sets for cylinders
coincide their projections, i.e., sets of solutions for formulas
∃zϕ(x), where z ⊂ x .
Since n-formulae produce cylinders on Cartesian products of
universes, definable sets of n-ary theories are composed by Boolean
combinations of definable cylinders, i.e., of elements of cylindric
algebras.
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n-transitive theories

Definition (cf. 15). For a natural number n, a theory T is called
n-transitive if each n-type q(x1, . . . , xn) ∈ S(T ) is forced by its
restriction to the empty language.

Proposition

If a theory T is n-transitive and non-(n + 1)-transitive then T is
not an n-theory.

15Sudoplatov S. V. Transitive arrangements of algebraic systems // Siberian
Math. J. — 1999. — Vol. 40, No. 6. — P. 1142–1145.
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n-transitive theories

Clearly, generic constructions 16 17 allow to produce, for each
n ≥ 1, n-transitive and non-(n + 1)-transitive theories with unique
(n + 1)-ary predicates and having quantifier elimination.

16Sudoplatov S. V. Syntactic approach to constructions of generic models /
S. V. Sudoplatov // Algebra and Logic. — 2007. — Vol. 46, No. 2. —
P. 134–146.

17Sudoplatov S. V. Classification of Countable Models of Complete Theories.
Novosibirsk : NSTU, 2018.
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n-transitive theories

For instance, the theory T of structureM = 〈{a, b, c , d};R(3)〉
with the ternary relation R =
{(a, b, c), (b, a, d), (b, c , d), (c , b, a), (a, c , d), (c , a, b), (c , d , a),
(d , c , b), (d , a, b), (a, d , c), (b, d , a), (d , b, c)} has quantifier
elimination, is 2-transitive, not 3-transitive, and thus ar(T ) = 3.
This example can be naturally spread for n-ary relations. In view of
Proposition 3 it implies the following:

Corollary

For any natural n ≥ 1 there is a theory Tn with ar(Tn) = n.
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Examples

The following examples illustrate values ar(T ) = n.

Example 1. 18 For any theory Tf of an unar, i.e., of one unary
operation f , ar(Tf ) ≤ 2. There are both theories Tf1 with
ar(Tf1) = 1 and theories Tf2 with ar(Tf2) = 2. For instance, f1 can
be taken identical, and f2 — a successor function on at least
3-element set.

Example 2. 14 For any theory TΓ of an acyclic graph Γ with unary
predicates, ar(TΓ) ≤ 2.

18Sudoplatov S. V. Basedness of stable theories and properties of countable
models with powerful types : Dis... cand. fiz.-mat. sc.: 01.01.06. — Novosibirsk,
1990. — 142 p. [in Russian]
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Examples

Example 3. Let E be the following equivalence relation on the set Rn:

{(M,N) | M(x1, . . . , xn),N(y1, . . . , yn) ∈ Rn, x2
1 +. . .+x2

n = y2
1 +. . .+y2

n}.

Equivalence classes for the concentric spheres in Rn can not be
reconstructed via cylinders defined by projections which form concentric
balls and circles. The homogeneity of equivalence classes implies that
each formula in the language 〈E 〉 is reduced to a Boolean combination of
2n-formulas. Thus Th(〈R,E 〉) is a 2n-theory which is not an
(2n − 1)-theory.
Adding a disjoint unary predicate P and a bijection f between the set of
spheres and P we obtain names for spheres and an additional coordinate
for generating formulas for a basedness. Thus we form a (2n + 1)-theory
which is not an 2n-theory.
Hence all possibilities for ar(T ) = n are realized.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



Examples

Example 4. Taking a non-degenerated algebraic surface at Rn

which is not reduced to cylinders we obtain a defining formula
ϕ(x), l(x) = n + 1, which is (n + 1)-formula and not an n-formula.
In particular, non-degenerated non-cylindrical surfaces of the second
order in R3 are defined by formulas ϕ with ar(ϕ) = 3. For instance,
taking the formula x2 + y2 + z2 = 1 for the sphere S we obtain
projections x2 + y2 ≤ 1, x2 + z2 ≤ 1, y2 + z2 ≤ 1 which can not
allow to reconstruct S by their Boolean combinations.

С.В. Судоплатов СЕМЕЙСТВА ТЕОРИЙ



Examples

Example 5. Recall 19 20 21 that a circular, or cyclic order relation
is described by a ternary relation K3 satisfying the following
conditions:
(co1) ∀x∀y∀z(K3(x , y , z)→ K3(y , z , x));
(co2) ∀x∀y∀z(K3(x , y , z) ∧ K3(y , x , z)↔ x = y ∨ y = z ∨ z = x);
(co3) ∀x∀y∀z(K3(x , y , z)→ ∀t[K3(x , y , t) ∨ K3(t, y , z)]);
(co4) ∀x∀y∀z(K3(x , y , z) ∨ K3(y , x , z)).
Clearly, ar(K3(x , y , z)) = 3 if the relation has at least three element
domain. Hence, theories with infinite circular order relations are at
least 3-ary.

19Kulpeshov B. Sh., Macpherson H.D. Minimality conditions on circularly
ordered structures // Mathematical Logic Quarterly. — 2005. — Vol. 51,
No. 4. — P. 377–399.

20Altaeva A. B., Kulpeshov B. Sh. On almost binary weakly circularly
minimal structures // Bulletin of Karaganda University, Mathematics. —
2015. — Vol. 78, No. 2. — P. 74–82.

21Kulpeshov B. Sh. On almost binarity in weakly circularly minimal structures
// Eurasian Mathematical Journal. — 2016. — Vol. 7, No. 2. — P. 38–49.
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Examples

The following generalization of circular order produces a n-ball or
n-circular order relation, for n ≥ 4, which is described by a n-ary
relation Kn satisfying the following conditions:
(nbo1) ∀x1, . . . , xn(Kn(x1, x2, . . . , xn)→ Kn(x2, . . . , xn, x1));

(nbo2) ∀x1, . . . , xn

(
Kn(x1, . . . , xi , xi+1, . . . , xn)∧

Kn(x1, . . . , xi+1, xi , . . . , xn)↔
n−1∨
i=1

xi = xi+1

)
;

(nbo3) ∀x1, . . . , xn(Kn(x1, . . . , xn)→
∀t[Kn(x1, . . . , xn−1, t) ∨ Kn(t, x2, . . . , xn)]);
(nbo4) ∀x1, . . . , xn(Kn(x1, . . . , xi , xi+1, . . . , xn) ∨
Kn(x1, . . . , xi+1, xi , . . . , xn)), i < n.
Clearly, ar(Kn(x1, . . . , xn)) = n if the relation has at least
n-element domain. Thus, theories with infinite n-ball order relations
are at least n-ary.
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Aritizable theories

Definition. A T -formula ϕ(x) is called n-expansible, or n-arizable,
or n-aritizable, if T has an expansion T ′ such that ϕ(x) is
T ′-equivalent to a Boolean combination of T ′-formulas with n free
variables.
A theory T is called n-expansible, or n-arizable, or n-aritizable, if
there is an n-ary expansion T ′ of T .
A theory T is called arizable, or aritizable, if T is n-aritizable for
some n.
A 1-aritizable theory is called unary-able, or unary-tizable. A
2-aritizable theory is called binary-tizable or binarizable, a
3-aritizable theory is called ternary-tizable or ternarizable, etc.
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Unary-tizable theories and formulae

Proposition
Any theory of a finite structureM is unary-tizable.

Proposition
Any formula of a theory having finitely many solutions is
unary-tizable.

Theorem
A theory T is unary-tizable if and only if for any (some) modelM
of T any definable set is formed by unions, intersections, Cartesian
sums and Cartesian products of subsets of M.
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Binarizable theories and their definable sets

Similarly, all definable sets of binarizable theories are generated by
unions, intersections, Cartesian sums and Cartesian products of
subsets of M2, extended by mixed sums and mixed products of
these subsets and their combinations:

Theorem
A theory T is binarizable if and only if for any (some) modelM of
T any ∅-definable set is formed by unions, intersections, Cartesian
sums, Cartesian products, mixed sums and mixed products of
subsets of M2.
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n-aritizable theories and their definable sets

Theorem
A theory T is n-aritizable, for n ≥ 1, if and only if for any (some)
modelM of T any ∅-definable set is formed by unions,
intersections, Cartesian sums, Cartesian products, mixed sums and
mixed products of subsets of Mn.

Theorem
A theory T is aritizable if and only if for any (some) modelM of
T any ∅-definable set is formed by unions, intersections, Cartesian
sums, Cartesian products, mixed sums and mixed products of
subsets of Mn, for some n.
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Dynamics of arities

Proposition
A theory T has a non-aritizable expansion iff T has an infinite
model.

Theorem
For any µ, ν ∈ (ω \ {0}) ∪ {∞} there is a theory Tµ,ν and its
expansion T ′µ,ν such that ar(Tµ,ν) = µ and ar(T ′µ,ν) = ν.
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Arities and E -closures

Theorem
If T ⊆ TΣ, T ∈ ClE (T ) \ T , n ∈ ω \ {0}, then the theory T is
n-ary iff any formula ϕ(x) of T is T ′-equivalent to some fixed
Boolean combination of n-formulae for some infinite (e-minimal)
set T ′ of theories T ′, which are obtained by restrictions of theories
in T till the language Σ(ϕ(x)), where T0 ∈ ClE (T ′) for the
Σ(ϕ(x))-restriction T0 of T .

A theory T satisfying the conditions of Theorem is called uniformly
n-approximated by family T .
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Arities and E -closures

Corollary

Let T ⊆ TΣ, T ∈ ClE (T ) \ T , n ∈ ω \ {0}, and there are both an
expansion T ′ of T and an expansion T ′ of T such that T ′ is
uniformly n-approximated by T ′. Then T is n-aritizable (by the
theory T ′).
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