
Устранение рекурсии в
полуинтерпретированных схемах

программ
(Recursion Elimination in Semi-interpreted Program Schemata)

Николай Вячеславович Шилов (Университет Иннополис, shiloviis@mail.ru)

Доклад для Всероссийской научной конференции
«Математические основы информатики и информационно-коммуникационных

систем» Тверской государственный университет, 3-8 декабря 2021 г.
(https://mfcsics.tversu.ru/)

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
1

mailto:shiloviis@mail.ru
https://mfcsics.tversu.ru/

Warming-up problem
from IMO-2019
Part 0

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
2

Problem & Answer

• Let 𝒁 be the set of integers. Determine all functions 𝑓: 𝒁 → 𝒁 such
that, for all integers 𝑎 and 𝑏, 𝑓 2𝑎 + 2𝑓 𝑏 = 𝑓 𝑓 𝑎 + 𝑏 .

• The problem can be solved using classical monadic recursion
elimination technique known in Theoretical Computer Science since
late 1960th: 𝑓 𝑥 = 2𝑥 + 𝑐𝑜𝑛𝑠𝑡.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
3

Problem via recursion elimination

• A classic example monadic recursion elimination by reduction to the
tail recursion is a so-called John McCarthy function 𝑀91: 𝑵 → 𝑵:

𝑀91 𝑛 = 𝑖𝑓 𝑛 > 100 𝑡ℎ𝑒𝑛 𝑛 − 10 𝑒𝑙𝑠𝑒 𝑀91 𝑀91 𝑛 + 11 .

• It was introduced by John McCarthy, studied by Zohar Manna, Amir
Pnueli, Donald Knuth. It turns out that

𝑀91 𝑛 = 𝑖𝑓 𝑛 > 101 𝑡ℎ𝑒𝑛 𝑛 − 10 𝑒𝑙𝑠𝑒 91.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
4

Problem via recursion elimination

• A “key” idea elimination is a move from a monadic function 𝑀91: 𝑵 →
𝑵 to a binary function 𝑀2:𝑵 × 𝑵 → 𝑵 such that for all 𝑛, 𝑘 ∈ 𝑵

𝑀2 𝑛, 𝑘 = 𝑀91
𝑘 𝑛

where 𝑀91
𝑘 𝑛 is 𝑘-time application of the function, i.e.:

o 𝑀91
𝑘 𝑛 = 𝑀91 …𝑀91 𝑛 … ,

o 𝑀2 𝑛, 0 = 𝑀91
0 𝑛 = 𝑛 for all 𝑛 ∈ 𝑵.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
5

Levels of Recursion Elimination –
interpreted and uninterpreted
Part 1

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
6

Recursive factorial

• Recursive program to compute the factorial function 𝐹:𝑵 → 𝑵

o𝐹 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑠𝑙𝑒 𝑛 ∙ 𝐹 𝑛 − 1 (in the standard
notation),

o𝐹 𝑛 = 𝑖𝑓 𝑝 𝑛 𝑡ℎ𝑒𝑛 𝑐 𝑒𝑙𝑠𝑒 𝑓 𝑛, 𝐹 𝑔 𝑛 (in a prefix notation),

where “known” functions are

o𝑝 ≡ 𝜆 𝑥 ∈ 𝑵. 𝑥 = 0 ∶ 𝑵 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛,

o𝑐 ≡ 1 ∶→ 𝑵 (i.e. a constant)

o𝑓 ≡ 𝜆 𝑥, 𝑦 ∈ 𝑵. 𝑥 ∙ 𝑦 ∶ 𝑵 × 𝑵 → 𝑵,

o𝑔 ≡ 𝜆 𝑥 ∈ 𝑵. 𝑖𝑓 𝑥 = 0 𝑡ℎ𝑒𝑛 0 𝑒𝑙𝑠𝑒 𝑥 − 1 ∶ 𝑵 → 𝑵.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
7

Imperative factorial

Program 1

1. 𝑉𝐴𝑅 𝑥, 𝑦:𝑵;

2. 𝑦:= 1;

3. 𝑤ℎ𝑖𝑙𝑒 𝑥 ≠ 0 𝑑𝑜

4. 𝑦:= 𝑥 ∙ 𝑦;

5. 𝑥:= 𝑥 − 1

6. 𝑜𝑑

Program 2

1. 𝑉𝐴𝑅 𝑥, 𝑦, 𝑧: 𝑵;

2. 𝑦:= 1; 𝑧 ≔ 1;

3. 𝑤ℎ𝑖𝑙𝑒 𝑧 ≤ 𝑥 𝑑𝑜

4. 𝑦 ≔ 𝑧 ∙ 𝑦;

5. 𝑧 ≔ 𝑧 + 1

6. 𝑜𝑑

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
8

What if known functions are uninterpreted?

Recursive schemata with a single available (not specified) data type 𝑻:

𝐹 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑐 𝑒𝑙𝑠𝑒 𝑓 𝑥, 𝐹 𝑔 𝑥

Standard scheme 1 Standard scheme 2

1. 𝑉𝐴𝑅 𝑥, 𝑦: 𝑻;
2. 𝑦 ≔ 𝑐;
3. 𝑤ℎ𝑖𝑙𝑒 ¬𝑝 𝑥 𝑑𝑜
4. 𝑦 ≔ 𝑓 𝑥, 𝑦 ;
5. 𝑥 ≔ 𝑔 𝑥
6. 𝑜𝑑

1. 𝑉𝐴𝑅 𝑥, 𝑦, 𝑧: 𝑻;
2. 𝑦 ≔ 𝑐; 𝑧 ≔ 𝑐;
3. 𝑤ℎ𝑖𝑙𝑒 𝑞 𝑥, 𝑧 𝑑𝑜
4. 𝑦 ≔ 𝑓 𝑧, 𝑦 ;
5. 𝑧 ≔ ℎ 𝑧
6. 𝑜𝑑

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
9

Herbrand models and structures

• To demonstrate that no two of program schemata from the previous
slide are equivalent, it is sufficient to consider Herbrand models (also
called free models).

• The domain of a Herbrand model comprises all terms constructed
from the available functional symbols and input variables (while the
domain of the Herbrand structures comprise the ground terms
exclusively).

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
10

Why the schemata aren’t equivalent?

• Let us consider a Herbrand model such that

o𝑞 is always 𝑇𝑅𝑈𝐸,

o𝑝 𝑔 𝑔 𝑥 is 𝑇𝑅𝑈𝐸 while 𝑝 is 𝐹𝐴𝐿𝑆𝐸 for all other terms.

• Then

o𝐹 𝑥 = 𝑓 𝑥, 𝐹 𝑔 𝑥 = 𝑓 𝑥, 𝑓 𝑔 𝑥 , 𝐹 𝑔 𝑔 𝑥 =

𝑓 𝑥, 𝑓 𝑔 𝑥 , 𝑐 ,

othe output value of 𝑦 computed by scheme 1 is 𝑓 𝑔 𝑥 , 𝑓 𝑥, 𝑐 ,

owhile scheme 2 does not halt at all.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
11

Translation of the recursive scheme
to a standard scheme (with equality)

1. 𝑉 𝐴𝑅 𝑥, 𝑦, 𝑢, 𝑣 ∶ 𝑻;
2. 𝑢 ∶= 𝑥;
3. 𝑤ℎ𝑖𝑙𝑒 ¬𝑝 𝑢 𝑑𝑜
4. 𝑢 ∶= 𝑔 𝑢
5. 𝑜𝑑
6. 𝑦 ∶= 𝑐;

7. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 𝑥 𝑑𝑜
8. 𝑣 ∶= 𝑥;
9. 𝑤ℎ𝑖𝑙𝑒 𝑔 𝑣 ≠ 𝑢 𝑑𝑜

𝐼𝑛𝑣. 1: ∃𝑚 < 𝑛 ∈ 𝑵 ∶ 𝑣 = 𝑔𝑚 𝑥 & 𝑢 = 𝑔𝑛 𝑥
𝑣 ∶= 𝑔 𝑣

𝑜𝑑;
𝐼𝑛𝑣. 2: 𝑔 𝑣 = 𝑢 & 𝑦 = 𝐹 𝑢

10. 𝑦 ∶= 𝑓 𝑢, 𝑦 ; 𝑢 ∶= 𝑣
11. 𝑜𝑑;
12. 𝑦 ≔ 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑐 𝑒𝑙𝑠𝑒 𝑓 𝑥, 𝑦

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
12

How to rid of the equality

• Finally, the equality used in lines 7 and 9
of the scheme is easy to eliminate
because it may be implemented as call
of the following tail-recursive function
𝐸𝑄 (easy to implement by an iterative
program:

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
13

𝐸𝑄 𝑎, 𝑏 = 𝑖𝑓 𝑝 𝑎 ∨ 𝑝 𝑎 𝑡ℎ𝑒𝑛 𝑝 𝑎 & 𝑝 𝑏 𝑒𝑙𝑠𝑒 𝐸𝑄 𝑔 𝑎 , 𝑔 𝑏 .

Translation of the recursive factorial
to an iterative form

1. 𝑉 𝐴𝑅 𝑥, 𝑦, 𝑢, 𝑣 ∶ 𝑵;
2. 𝑢 ∶= 𝑥;
3. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 0 𝑑𝑜
4. 𝑢 ∶= 𝑢 − 1
5. 𝑜𝑑
6. 𝑦 ∶= 1;

7. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 𝑥 𝑑𝑜
8. 𝑣 ∶= 𝑥;
9. 𝑤ℎ𝑖𝑙𝑒 𝑣 − 1 ≠ 𝑢 𝑑𝑜

𝐼𝑛𝑣. 1: ∃𝑚 < 𝑛 ∈ 𝑵 ∶ 𝑣 = 𝑥 −𝑚 & 𝑢 = 𝑥 − 𝑛
𝑣 ∶= 𝑣 − 1

𝑜𝑑;
𝐼𝑛𝑣. 2: 𝑣 − 1 = 𝑢 & 𝑦 = 𝐹 𝑢

10. 𝑦 ∶= 𝑢 ⋅ 𝑦; 𝑢 ∶= 𝑣
11. 𝑜𝑑;
12. 𝑦 ≔ 𝑖𝑓 𝑥 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 𝑥 ⋅ 𝑦

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
14

Extremely inefficient
but semantic-independent
• Unfortunately, imperative factorial from the previous slide 10 is

extremely inefficient – it runs in 𝑂 𝑛2 time in contrast to both
programs (1 and 2) from slide 4 that run in linear time 𝑂 𝑛 .

• It worth to remark that Program 1 can be automatically constructed
from the recursive factorial program using co-recursion and tail-
recursion.

• This use of the co-recursion is semantic-dependent (since it is safe
assuming commutativity of the function 𝑓), while our approach to
recursion elimination is semantic-independent.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
15

Co-recursion and Tail-recursion by example

• Recursive factorial 𝐹 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑠𝑙𝑒 𝑛 ∙ 𝐹 𝑛 − 1 is not in
the tail-form (because has next call inside some function).

• But it is equivalent to the following recursive program in the tail-form:

൝
𝐹 𝑛 = 𝑃 𝑛, 1

𝑃 𝑛,𝑚 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑚 𝑒𝑠𝑙𝑒 𝑃 𝑛 − 1 , 𝑛 ∙ 𝑚
.

• This program is in the tail-form because all calls are never inside other
functions.

• Co-recursion is a “trick” that consists in converts result into another
argument and use this argument in the recursion.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
16

Teil-recursion elimination by example

• Tail-recursion ൝
𝐹 𝑛 = 𝑃 𝑛, 1

𝑃 𝑛,𝑚 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑚 𝑒𝑠𝑙𝑒 𝑃 𝑛 − 1 , 𝑛 ∙ 𝑚

is easy to eliminate (and compare with Program 1 from slide 4):

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
17

𝑠𝑡𝑎𝑟𝑡: 𝑉𝐴𝑅 𝑥, 𝑦: 𝑵 𝑔𝑜𝑡𝑜 2
2: 𝑦:= 1 𝑔𝑜𝑡𝑜 3
3: 𝑖𝑓 𝑥 = 0 𝑡ℎ𝑒𝑛 𝑔𝑜𝑡𝑜 𝑠𝑡𝑜𝑝 𝑒𝑙𝑠𝑒 𝑔𝑜𝑡𝑜 4
4: 𝑦:= 𝑥 ⋅ 𝑦 𝑔𝑜𝑡𝑜 5
5: 𝑥:= 𝑥 − 1 𝑔𝑜𝑡𝑜 3
stop

1. 𝑉𝐴𝑅 𝑥, 𝑦: 𝑵;
2. 𝑦:= 1;
3. 𝑤ℎ𝑖𝑙𝑒 𝑥 ≠ 0 𝑑𝑜
4. 𝑦:= 𝑥 ∙ 𝑦;
5. 𝑥:= 𝑥 − 1
6. 𝑜𝑑

Recursive and iterative
Dynamic Programming
Part 2

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
18

Warming-up Dropping Bricks Problem

• Define stability of “bricks” (cell phones) by
dropping them from a tower of H meters. How
many times do you need to drop bricks, if you
have just 2 bricks?

• 𝐺 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 0 𝑒𝑙𝑠𝑒

1 + min1≤𝑘≤𝑛max 𝑘 − 1 , 𝐺 𝑛 − 𝑘 .

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
19

History of “Dynamic Programming”

• Dynamic Programming was introduced by Richard Bellman in the
1950s to tackle optimal planning problems.

• In 1950s the noun programming had nothing in common with more
recent computer programming and meant planning (compare: linear
programming).

• The adjective dynamic points out that Dynamic Programming is
related to a change of states (compare – dynamic logic, dynamic
system).

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
20

Bellman equation and optimality principle

• Bellman equation is a functional equality for the objective function
that expresses the optimal solution at the current state in terms of
the optimal solution at next (changed) states.

• It is conceptualized a so-called Bellman Principle of Optimality: an
optimal plan (or program) should be optimal at every stage.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
21

Descending (top-down)
Dynamic Programming
• General pattern of Bellman equation may be formalised by the

following scheme of recursive descending Dynamic Programming:

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥 ;

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
22

the term is linear in each branch
w.r.t. the objective function G

Descending (top-down)
Dynamic Programming – cont.
• In this scheme

o𝐺: 𝑋 → 𝑌 is a symbol for the objective function,

o𝑝: 𝑋 → 𝐵𝑜𝑜𝑙 is a symbol for a known predicate,

o𝑓: 𝑋 → 𝑌 is a symbol for a known function,

o is a symbol for a known function with a variable (but finite)
number of arguments,

• all ℎ𝑖: 𝑋 × 𝑍 → 𝑌, 𝑖 ∈ 1. . 𝑛(𝑥) are symbols for known functions,

• all ℎ𝑖: 𝑋 → 𝑋, 𝑖 ∈ 1. . 𝑛(𝑥) are symbols for known functions too.

December 7, 2021 23
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)

More Examples:
Factorial, Fibonacci Numbers and Words
• 𝐹 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 𝑛 ⋅ 𝐹 𝑛 − 1 ;

• 𝐹𝑖𝑏 𝑛 = 𝑖𝑓 0 ≤ 𝑛 ≤ 1 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 𝐹𝑖𝑏 𝑛 − 2 + 𝐹𝑖𝑏 𝑛 − 1 ;

• 𝑊𝑟𝑑 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑎

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑛 = 1 𝑡ℎ𝑒𝑛 𝑏

𝑒𝑙𝑠𝑒 𝑊𝑟𝑑 𝑛 − 2 ∘ 𝑊𝑟𝑑 𝑛 − 1 .

December 7, 2021 24
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)

Observations

• Factorial, Fibonacci Numbers and Words need static memory of a
fixed size.

• Surprisingly, but Dropping Bricks Problem also needs just static

memory of fix-size, since 𝐺 𝑛 = arg min 𝑘 ∈ 𝑵:
𝑘 𝑘+1

2
≥ 𝑛 .

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
25

Problem under study

• It follows from Paterson M.S. and Hewitt C.T. paper Comparative
Schematology (1970) that fix-size static memory is not enough for
recursion elimination in Bellman equation.

• When one-time allocated

oarray (with integer indexes),

o(fix-size) static memory

is sufficient to eliminate recursion in Bellman equation?

December 7, 2021 26
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)

A Need of Dynamic Memory

• The following program scheme

𝐹 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑓 𝐹 𝑔 𝑥 , 𝐹 ℎ 𝑥

is not equivalent to any standard program scheme:

for every 𝑛 > 0

there exists an Herbrand model 𝑇𝑛
where any standard program scheme

needs 𝑛 variables to compute 𝐹.

December 7, 2021 27
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)

Support of the Objective Function

• If 𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

is defined for some value 𝑣, then it is possible to pre-compute the
support spp 𝑣 , the set of all values that occur in the computation of
𝐺 𝑣 :

spp 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑥 ⋃ ⋃𝑖∈ 1..𝑛 𝑥 spp 𝑡𝑖 𝑥 .

• Remark, that for every 𝑣, if 𝐺 𝑣 is defined, then spp 𝑣 is finite (but
not vice versa).

December 7, 2021 28
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)

When an array suffices

• One-time allocated array with integer indexes suffices for computing

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

if 𝑛 is a constant and all 𝑡𝑖, 𝑖 ∈ 1. . 𝑛 𝑥 , are interpreted by
commutative functions.

December 7, 2021 29
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)

When static memory suffices

• Fix-size static memory suffice for computing

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

if 𝑛 𝑥 = 𝑛 is a constant and there exists a known computable
function 𝑡 such that

o𝑡𝑖 = 𝑡𝑖 for all 𝑖 ∈ 1. . 𝑛 ,

o𝑝 𝑢 implies 𝑝 𝑡 𝑢 for all 𝑢 ∈ spp 𝑥 .

• Examples: Factorial, Fibonacci Numbers and Words.

• Counter-example: Paterson-Hewitt scheme.

December 7, 2021 30
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)

Design outlines and proof comments

Proof comments

• Proof idea – very same as for
factorial function in Part 1.

• Scheme’ design (with equality
and invertible function 𝑡) is
depicted to the right.

Design outlines

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
31

References, concluding remarks,
and topics for further research
Part 3

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
32

References

1. G. Berry. Bottom-up computation of recursive programs. RAIRO |
Informatique Th´eorique et Applications (Theoretical Informatics
and Applications, 10(3):47-82, 1976.

2. R. S. Bird. Zippy tabulations of recursive functions. In Proceedings of
the 9th International Conference on Mathematics of Program
Construction, MPC ’08, pages 92-109. Springer-Verlag, 2008.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
33

References – cont.

3. J. Cowles and R. Gamboa. Contributions to the theory of tail
recursive functions, 2004. Available at
http://www.cs.uwyo.edu/~ruben/static/pdf/tailrec.pdf.

4. D.E. Knuth. Textbook examples of recursion.
arXiv:cs/9301113[cs.CC], 1991.

5. Y. A. Liu. Systematic Program Design: From Clarity to Efficiency.
Cambridge University Press, 2013.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
34

References – cont.

6. M.S. Paterson and C.T. Hewitt. Comperative schematology. In Proc.
of the ACM Conf. on Concurrent Systems and Parallel Computation,
pages 119-127. Association for Computing Machinery, 1970.

7. N.V. Shilov. Etude on recursion elimination. Modeling and Analysis
of Information Systems, 25(5):549-560, 2018.

8. N.V. Shilov, D. Danko Teaching Efficient Recursive Programming and
Recursion Elimination Using Olympiads and Contests Problems. In
Proc. of the workshop on Frontiers in Software Engineering
Education (FISEE-2019), Lecture Notes in Computer Science, 2020,
v.12271, p.246-264.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
35

Concluding remarks

• A novelty of our study consists in use of templates (understood as
semi-interpreted program schemata with symbol of a variable arity)
and sematic sufficient conditions that allow recursive programs to be
computed efficiently by iterative imperative programs (with either an
associative or integer arrays or just with a finite fixed size static
memory).

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
36

Further research topics

• All our sufficient conditions impose some constraints on
interpretation of functional and predicate symbols. A very natural
question s whether we can weaken these sufficient conditions?

• Computer-aided verification of the correctness of the translation of
the descending dynamic programming template into iterative
templates with arrays or fix-size static memory is a topic for further
research.

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
37

IMO Grad Challenge

The International Mathematical Olympiad (IMO) is perhaps the most
celebrated mental competition in the world and as such is among the
ultimate grand challenges for Artificial Intelligence (AI).

The challenge: build an AI that can win a gold medal in the competition.

(https://imo-grand-challenge.github.io/)

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
38

https://imo-grand-challenge.github.io/

Before saying Goodbye

• Добро пожаловать на
Российский онлайн-семинар
по фундаментальным вопросам
программной инженерии,
теории и экспериментальному
программированию RuSTEP!

December 7, 2021
N.V. Shilov - Recursion Elimination - A talk for MFCSIS

(https://mfcsics.tversu.ru/)
39

• Russian seminar on Software Engineering, Theory and Experimental
Programming (https://persons.iis.nsk.su/ru/ruSTEP).

https://persons.iis.nsk.su/ru/ruSTEP

