YcTpaHeHne peKypcumn B
NONYUHTEPNPETUPOBAHHbIX CXeMaX
nporpamm

(Recursion Elimination in Semi-interpreted Program Schemata)

Hukonait Bauecnasosuu Lnnos (YHusepcutetr MHHononuc, shiloviis@ mail.ru)

[loknaa ana Bcepoccnmckom Hay4HOM KoOHbepeHLUUn
«MaTemaTtnyeckme ocCHoOBbl MHPOPMATUKN U MHPOPMALMOHHO-KOMMYHUKALMOHHbIX
cuctem» TBEPCKOM rocyaapcTBeHHbIN yHUBepcuTeT, 3-8 aekabpa 2021 r.
(https://mfcsics.tversu.ru/)

mailto:shiloviis@mail.ru
https://mfcsics.tversu.ru/

Warming-up problem
from IMO-2019

Problem & Answer

* Let Z be the set of integers. Determine all functions f: Z — Z such
that, for all integers a and b, f(2a) + 2f(b) = f(f(a + b)).

* The problem can be solved using classical monadic recursion
elimination technique known in Theoretical Computer Science since
late 1960th: f(x) = 2x + const.

N.V. Shilov - Recursion Elimination - A talk for MFCSIS

D 2021
ecember 7, 20 (https://mfcsics.tversu.ru/)

Problem via recursion elimination

* A classic example monadic recursion elimination by reduction to the
tail recursion is a so-called John McCarthy function Mg;: N — N:

My1(n) = if n > 100 then (n — 10) else Mg;(Mg1(n + 11)).

* It was introduced by John McCarthy, studied by Zohar Manna, Amir
Pnueli, Donald Knuth. It turns out that

Mg1(n) =if n > 101 then (n — 10) else 91.

Problem via recursion elimination

* A “key” idea elimination is a move from a monadic function Mg{: N —
N to a binary function M2: N X N — N such thatforalln,k € N

M2(n, k) = (Mgy)*(n)
where (Mgq)*(n) is k-time application of the function, i.e.:

o (Mg)*(n) = My1(... Mgy (n) ...),
o M2(n,0) = (Mg1)’(n) =nforalln € N.

Levels of Recursion Elimination —
interpreted and uninterpreted

Recursive factorial

* Recursive program to compute the factorial function F: N - N

oF(n) =ifn=0thenleslen:-F(n — 1) (in the standard
notation),

oF(n) =if p(n) thencelse f (n,F(g(n))) (in a prefix notation),
where “known” functions are

op = (Ax € N.(x = O)) : N > Boolean,

oc=1:- N (i.e. a constant)

of = (Ax,yEN.(x-y)) : NXN > N,

0g = (AxEN.(ifxz OthenOelse(x—l))):N%N.

N.V. Shilov - Recursion Elimination - A talk for MFCSIS

D 2021
ecember 7, 20 (https://mfcsics.tversu.ru/)

Imperative factorial

Program 1 Program 2

1. VAR x,y:N; 1. VAR x,y,z: N;
2 y.=1; 2 y.:=1;,z:=1;
3. whilex # 0do 3. whilez < xdo
4 yi=Xx-Yy; 4 y=z-y;
5. x:=x—1 5. z=z+1

6. od 6. od

What if known functions are uninterpreted?

Recursive schemata with a single available (not specified) data type T

F(x) =if p(x) thencelse f (x,F(g(x)))

Standard scheme 1 Standard scheme 2
1. VAR x,y:T; 1. VAR x,y,z:T;
2. Y= 2. Y= Z=C

3. while =p(x) do 3. while q(x,z) do
4 y=fly); 4 y=f(zy);
5. x = g(x) 5. z = h(z)

6. od 6. od

December 7. 2021 N.V. Shilov - Recursion Elimination - A talk for MFCSIS
’ (https://mfcsics.tversu.ru/)

Herbrand models and structures

* To demonstrate that no two of program schemata from the previous
slide are equivalent, it is sufficient to consider Herbrand models (also
called free models).

* The domain of a Herbrand model comprises all terms constructed
from the available functional symbols and input variables (while the
domain of the Herbrand structures comprise the ground terms
exclusively).

Why the schemata aren’t equivalent?

e Let us consider a Herbrand model such that
oq is always TRUE,

op (g(g(x))) is TRUE while p is FALSE for all other terms.
* Then

oF(x) = f (X'F (g(x))) =f (x,f (g(X),F (g(g(x))))) =

f(x flg(x),),
othe output value of y computed by scheme 1 is f(g(x),f(x, c)),
owhile scheme 2 does not halt at all.

QA W N

Translation of the recursive scheme
to a standard scheme (with equality)

VAR x,y,u,v:T; 7 whileu+ xdo
U= x; 8. Vi= X,
while -p(u) do 9. while g(v) + udo
u:= g(u) Inv.1: Im<neN: v=g"™(x)&u = g"(x)
od v:i= g(v)
y = C; od,;

Inv.2: glv)=u&y=F(u)

10. y:= f(u,y); u:=v
11. od;

12,y :=if p(x) thenc else f(x,y)

How to rid of the equality

VAR r.y,u, v : D

U=
while —p(u) do

= glu)

* Finally, the equality used in lines 7 and 9
of the scheme is easy to eliminate i
because it may be implemented as call |7 whcuzea

Rl I S FL N e I

of the following tail-recursive function L N = () & = ()
. . . v = g(v)

EQ (easy to implement by an iterative ”{IJ e P

program. i[l] { y = flu,y);: ..!r-:= v h

EQ(a,b) = if p(a) v p(a) then p(a) & p(b) else EQ(g(a), g(b)).

QA W N

Translation of the recursive factorial
to an iterative form

VAR x,y,u,v: N; 7. whileu+# xdo
U= x; 8. Vi= X,
while u # 0 do 9. while (v —1) # udo
u:=u-—1 hv.l:3m<neN:v=x—m&u=x—n
od vi=v—1
y:=1; od;

nv.2: v=1)=u&y=F(u)
10. yi=u-y, u:= v
11. od;
12y :=if (x =0) then1else (x - y)

Extremely inefficient
but semantic-independent

e Unfortunately, imperative factorial from the previous slide 10 is
extremely inefficient — it runs in O(n?) time in contrast to both
programs (1 and 2) from slide 4 that run in linear time O(n).

* It worth to remark that Program 1 can be automatically constructed
from the recursive factorial program using co-recursion and tail-

recursion.

* This use of the co-recursion is semantic-dependent (since it is safe
assuming commutativity of the function f), while our approach to
recursion elimination is semantic-independent.

Co-recursion and Tail-recursion by example

* Recursive factorial F(n) =if n =0then1leslen-F(n —1)isnotin
the tail-form (because has next call inside some function).

e But it is equivalent to the following recursive program in the tail-form:
F(n) =P(n,1)
P(n,m) =if n=0thenmesle P((n —1),(n- m))'
* This program is in the tail-form because all calls are never inside other
functions.

e Co-recursion is a “trick” that consists in converts result into another
argument and use this argument in the recursion.

Teil-recursion elimination by example

F(n)=P(n,1)
P(n,m) =if n=0thenmesle P((n —-1),(n- m))
is easy to eliminate (and compare with Program 1 from slide 4):

* Tail-recursion

start: VAR x,y: N goto 2 1. VAR x,y:N;

2: y:=1goto 3 2. y.=1;

3: if x = 0then goto stop else goto 4| 3. whilex # 0do
4: y:=x-y gotoh 4. Yi=X-Y;
5: x:=x—1goto 3 5. x:=x—1
stop 6. od

Recursive and iterative
Dynamic Programming

Warming-up Dropping Bricks Problem

* Define stability of “bricks” (cell phones) by
dropping them from a tower of H meters. How
many times do you need to drop bricks, if you
have just 2 bricks?

e G(n) =if n=0then 0 else
1 4+ min,<p<, max{(k —1),G(n — k)}.

B |] {5
December 7, 2021 N.V. Shilov - Recursion Elimination - A talk for MFCSIS 19

(https://mfcsics.tversu.ru/)

History of “Dynamic Programming”

* Dynamic Programming was introduced by Richard Bellman in the
1950s to tackle optimal planning problems.

* In 1950s the noun programming had nothing in common with more
recent computer programming and meant planning (compare: linear
programming).

* The adjective dynamic points out that Dynamic Programming is
related to a change of states (compare — dynamic logic, dynamic
system).

Bellman equation and optimality principle

e Bellman equation is a functional equality for the objective function
that expresses the optimal solution at the current state in terms of
the optimal solution at next (changed) states.

* It is conceptualized a so-called Bellman Principle of Optimality: an
optimal plan (or program) should be optimal at every stage.

Descending (top-down)
Dynamic Programming

* General pattern of Bellman equation may be formalised by the
following scheme of recursive descending Dynamic Programming:

G(x) =if p(x) then f(x) else

g({ (x G(t (x))) |1. n(x)]})
\
|
the term is linear in each branch
w.r.t. the objective function G

)

Descending (top-down)
Dynamic Programming — cont.

* In this scheme
oG:X = Y is a symbol for the objective function,
op: X = Bool is a symbol for a known predicate,
of:X — Y is asymbol for a known function,

o is a symbol for a known function with a variable (but finite)
number of arguments,

callhj: X X Z - Y,i€[1..n(x)] are symbols for known functions,
callh;: X - X, i € [1..n(x)] are symbols for known functions too.

More Examples:
Factorial, Fibonacci Numbers and Words

cF(n) =ifn=0thenlelsen-F(n—1);
 Fib(n) =if 0 <n < 1thenlelse Fib(n—2) + Fib(n — 1);
* Wrd(n) =if n=0thena
elseif n=1thenb
else Wrd(n —2) o Wrd(n — 1).

Observations

* Factorial, Fibonacci Numbers and Words need static memory of a
fixed size.

 Surprisingly, but Dropping Bricks Problem also needs just static

memory of fix-size, since G(n) = arg mink € N: (k(k;l) > n)

Problem under study

* It follows from Paterson M.S. and Hewitt C.T. paper Comparative
Schematology (1970) that fix-size static memory is not enough for
recursion elimination in Bellman equation.

* When one-time allocated

oarray (with integer indexes),
o(fix-size) static memory

is sufficient to eliminate recursion in Bellman equation?

A Need of Dynamic Memory

* The following program scheme

F(x) = if p(x) thenxelse f (F(g(x)),F(h(x)))

is not equivalent to any standard program scheme:
foreveryn > 0
there exists an Herbrand model T,
where any standard program scheme
needs n variables to compute F.

Support of the Objective Function

* If G(x) =if p(x) then f(x) else

g (% {hi (. 6(6:(0)) : i € [1..n(0)]})

is defined for some value v, then it is possible to pre-compute the

support spp(v), the set of all values that occur in the computation of
G(v):

spp(x) = if p(x) then {x} else {x}U (Uie[r.ncopspp(t: ()).

* Remark, that for every v, if G(v) is defined, then spp(v) is finite (but
not vice versa).

When an array suffices

* One-time allocated array with integer indexes suffices for computing
G(x) =if p(x) then f(x) else

g (x, {hi (x,G(ti(x))) [€ (1..n(x))})

if nisaconstantandallt;, i € (1..n(x)), are interpreted by
commutative functions.

When static memory suffices

* Fix-size static memory suffice for computing
G(x) =if p(x) then f(x) else
g (x, {hi (x,G(ti(x))) [€ (1..n(x))})

if n(x) = nis a constant and there exists a known computable
function t such that

ot; = ttforalli € [1..n],

op(u) implies p(t(u)) for all u € spp(x).
* Examples: Factorial, Fibonacci Numbers and Words.
* Counter-example: Paterson-Hewitt scheme.

Design outlines and proof comments

Proof comments

* Proof idea — very same as for
factorial function in Part 1.

* Scheme’ design (with equality
and invertible function t) is
depicted to the right.

=]

S s

9

10
11
12
13

Design outlines

VAR r.xy....10n - X:
VAR y. 1. ...y - Y
T =,
if p(x) then y:= f(x)
else { do x :=t(x) until p(x):

ry =1x; Yy = flm);
ro = t(xr1); y2 == flxa):
Tn =Hrn_1); yn = flza):
do
r:=1t"(x);
J/Invariant: x == (x) & bas(x) = {xy,... T} &
[/Invariant: & 4 = G(x) &... & yo = G(z,)

y = _f;(f- (ha(z,1n). ... h"{f-y“])):

Yn 1= Yn—1; .. Y3 1= Y2: Y2 = y1:
n =y
ry i=t"(x1); ... Tp:i=t"(x,)
until r = r'lr.

N.V. Shilov - Recursion Elimination - A talk for MFCSIS

December 7, 2021

(https://mfcsics.tversu.ru/)

31

References, concluding remarks,
and topics for further research

References

1. G. Berry. Bottom-up computation of recursive programs. RAIRO |
Informatique Th’eorique et Applications (Theoretical Informatics
and Applications, 10(3):47-82, 1976.

2. R.S.Bird. Zippy tabulations of recursive functions. In Proceedings of
the 9th International Conference on Mathematics of Program
Construction, MPC '08, pages 92-109. Springer-Verlag, 2008.

References — cont.

3. J. Cowles and R. Gamboa. Contributions to the theory of tail
recursive functions, 2004. Available at

http://www.cs.uwyo.edu/~ruben/static/pdf/tailrec.pdf.

4. D.E. Knuth. Textbook examples of recursion.
arXiv:cs/9301113[cs.CC], 1991.

5. Y. A. Liu. Systematic Program Design: From Clarity to Efficiency.
Cambridge University Press, 2013.

References — cont.

6. M.S. Paterson and C.T. Hewitt. Comperative schematology. In Proc.
of the ACM Conf. on Concurrent Systems and Parallel Computation,
pages 119-127. Association for Computing Machinery, 1970.

7. N.V. Shilov. Etude on recursion elimination. Modeling and Analysis
of Information Systems, 25(5):549-560, 2018.

8. N.V. Shilov, D. Danko Teaching Efficient Recursive Programming and
Recursion Elimination Using Olympiads and Contests Problems. In
Proc. of the workshop on Frontiers in Software Engineering
Education (FISEE-2019), Lecture Notes in Computer Science, 2020,
v.12271, p.246-264.

Concluding remarks

* A novelty of our study consists in use of templates (understood as
semi-interpreted program schemata with symbol of a variable arity)
and sematic sufficient conditions that allow recursive programs to be
computed efficiently by iterative imperative programs (with either an
associative or integer arrays or just with a finite fixed size static
memory).

Further research topics

* All our sufficient conditions impose some constraints on
interpretation of functional and predicate symbols. A very natural
guestion s whether we can weaken these sufficient conditions?

 Computer-aided verification of the correctness of the translation of
the descending dynamic programming template into iterative
templates with arrays or fix-size static memory is a topic for further
research.

IMO Grad Challenge

The International Mathematical Olympiad (IMO) is perhaps the most

celebrated mental competition in the world and as such is among the
ultimate grand challenges for Artificial Intelligence (Al).

The challenge: build an Al that can win a gold medal in the competition.

(https://imo-grand-challenge.github.io/)

December 7, 2021 N.V. Shilov - Recursion EI@ma’uon—AtaIk for MFCSIS 33
(https://mfcsics.tversu.ru/)

https://imo-grand-challenge.github.io/

Before saying Goodbye

ru-STEP no-pyccku

e [lobpo norkasoBaTb Ha

mno d))’HJiI,\ll’HTil"lebl_\l Bompocam ll[l()l"])élll,\lHOl"l HHAKCHEepHH,
TEOPHH H DKCHEPHMEHTAJIBHOMY NPOrpaAMMHPOBAHHIO

P O C C M I?] C K M I?I O H f| a ﬁ H - C e N\ M H a p ru-STEP = russian seminar on Software Engineering, Theory and Experimental Programming.

(TecroBas Bepcna cTpaHNIB! cemuHapa. [pi HeoGxommvocTir Ber MokeTe nepeiiTil Ha CTPAHIITY CeMITHAPA HA AHIIIICKOM A3BIKE.)

Vupeaurtean ceMuHapa:

no q)y HOAMeHTa/ibHbIM BOMNPOCaMm i iy g M g e

Jmirrpnit Anekcarzaposird Korzuparses (ITactimyT cricrem nadopmarikin CO PAH - Hosocndipek, apple-66 "wa" mail.ru)
Anexcartp Bramnposira Haymaes (Vanseperrer Hunonomic - Hunononie, a.naumchev "sa” innopolis.ru)
Jernc KorctanTnsorira loromapes (ITeetnmyT encten mapopmatiar CO PAH i1 Hooen6npekmnit Tocyzapersennsiit Yanpepenet - Hosoenéipek, ponom

J
Anekceit Brannposirs Tposexusit (IHCTHTYT cnictem mHbopstarikn CO PAH - HosoenSupex, promsky "sa” iis.nsk.su)
Anzpeit Arexcarposirs Cazossix (Vemseperret Ironomnc - Himomomc, a.sadovykh "sa” innopolis.n)
) :: Hixonait Bawecnasosira Illios (Vausepenrer Haromomice - Hinonomie, shiloviis "Ha" mail.ru)
Of‘)lll"l‘ CBeICHHUSA 0 CeMHHape:

I e O M M M 3 K‘ I I e M M e H I a n b H O M :: CeMIHAp ABIASTCH MHIMIATIIBOI IPYINL! cOTpyAHIKOB YHuBepenrera Iunonomitc® n Ineriryra cncrem undopmarmk . AJT. Epmiopa
:: TIepIOMITHOCT 3aceIaKIIT ceMITHapa - | pa3 B IBe Hellemn (caemiTe 3a oOBABICHILAMII Ha 3T0il cTpanne). Pacmicanne gopMupyeTcs B Hagaze KaiIOro ceMecTpa

yupe:sirenm cexmapa. TIporpaa cexiapa GOPMIPYeTCS Ha MeCAI Bliepe:t It yOTIKyeTcs Ha JaHHOI CTpaHIILe.

:: Biuieoapxie cemnHapa (Haunsas ¢ 2021 r.) paayemaercs B naeitmicte™ Ha YouTube-kanage IICTI CO PAH

su)

| (https://www. youtube com/channel UCyMEarhoNITHZ ykx] 9i10Ww) 7.
 ST3bIK CeMITHAPA PYCCKIITE 1t AHTIHCKITE. PeKOMEHIYETCA FOTOBIITS IPe3eHTALINO HA ARTTIHICKOM, JIOKTA 1t 0GCYKICHIE 1eaTh HA PYCCKOM (€T HET 3apyOeAHEI YHACTHITKOB),
L] HO OBIT TOTOBBIM Hﬂpk"ﬁﬂl HA AHITINICKIT (ecmt ecTh lﬂp)'l‘)(‘lkHblC }“l.\CIHllLlX).

22 VApeINTeN I ceMiHapa MMeloT HaMepeHIle B pa3 B 107 To1a MyOInKoBaTh 0030p J0KTaI0B, NMPEICTaBIeHHEIX Ha CEMITHApe 3a NpeblIyIiee MOTYTOANE, B 31eKTPORHOM KypHane

CrrcTeMHad NHGOPMATIIKS

* Russian seminar on Software Engineering, Theory and Experimental
Programming (https://persons.iis.nsk.su/ru/ruSTEP).

N.V. Shilov - Recursion Elimination - A talk for MFCSIS

D ber 7, 2021 .
ecember 7, (https://mfcsics.tversu.ru/)

39

https://persons.iis.nsk.su/ru/ruSTEP

